2学生(CSE)KIIT被认为是大学,印度布巴内斯瓦尔,93531 42775,3名学生(机械)Kiit被认为是大学,印度布巴内斯瓦尔,印度布巴内斯瓦尔,8984030821,4助理教授(机械)Kiit(机械)Kiit to to be be be be be be be be be be becription offers of bectire 827,bhubanswar827,82在公共安全和城市基础设施中发挥重要作用。但是,有必要用智能路灯替换传统的路灯,这些路灯包含传感器和执行器与适当的设备集成,以使其更聪明。传统的路灯有许多问题,例如巨大的功耗,寿命较小,难以检测到故障。为了克服这些问题,有必要实施智能和先进的技术,例如基于无人机的空中检查,基于Zig Bee的无线传感器等等。这些技术不仅检测出故障,而且有助于减少时间的浪费,维护成本并提高其性能。因此,这项研究的目的是通过提高街道照明的效率和可靠性来建立智能的城市基础设施。关键字:路灯,基于无人机的空中检查,故障检测,LDR(轻度电阻器),运动传感器,物联网,纳米传感器,增强现实,超声测试。简介:从小就听到我们的社会一直是我们社会的恩赐,所以它也以某种方式从科学发展而来。我们都熟悉“ Iot”一词,这些事物不仅向我们介绍了新技术,而且还可以帮助人们使用智能技术来使用智能技术来制造系统,以制造系统,以制造系统的管理。街道灯就像有车辆的人一样的生存套件,也是最需要的参数,不仅是道路,而且在房屋外部,也可以为行人和驾驶员提供帮助。它并不像看起来很简单,它需要很简单,它需要很高的时间维持时间来维持时间,这是由于thundercrestorm,雨水等多年的时间都无法实现的时间。缺陷。但它是21世纪,需要对其进行更改并转移到技术的发展,这些技术超出了手动维护街道光线。目的是最大程度地减少并帮助减少在手动维护光线上的工作量,从而通过放置传感器或其他特定的软件来避免使用较长的街道,从而可以通过其他特定的软件来检测到有价值的时间。寿命和增强的控制选项也需要弄清楚。要解决此类问题,包括事故,需要建立智能路灯来代替
摘要:本文介绍了使用叶状脂质的稳定化,N-(甲基氧基乙基氧苯乙烯)-1,2-二抗乙酰烯酰基-SN-甘油-3-磷酸乙醇胺钠含量(DSPE-PEG)(DSPE-PEG)(DSPE-PEG)(DSPE-PEG)(DSPE-PEG)和自然海关的评估。脂质体,并比较不同长度和DSPE-PEG的引入比率。随着PEG比的增加,存活率增加。此外,研究了不同阳离子溶液(Na +,K +,Mg 2+和Ca 2+溶液)中的存活率,以估计DSPE-PEG引入的效果。我们提出,脂质体稳定性的这些变化是由于阳离子引起的,特别是聚(乙二醇)(PEG)(PEG)链和二价离子之间的相互作用,这有助于使阳离子难以进入脂质膜。我们的研究提供了对PEG脂质使用的见解,并可能为使用不同自然环境的脂质体分子机器人制造一种有希望的方法。
前药或可以激活前药的成分,特定于肿瘤。生物正交化学已成为按需前药激活的一种有希望的平台,因为它包括可以在生理条件下进行的化学反应而不会干扰生物学过程。4,5这些反应的选择性,特定城市和相当快的动力学允许精确控制非毒性前药的激活。6 - 8据报道,许多生物正交反应具有很高的选择性前药激活的潜力,例如叠氮化物和三苯基芬丁基之间的Staudinger连接,9和跨环环烯(TCO)和四嗪(TZ)之间的四津连接。10,Staudinger连接主要用于连接应用,因为其动力学相对较慢(K 2〜10-3 m-1 s-1),并且少量报告揭示了其前药激活的潜力。11 - 13在低浓度下,四嗪连接以其快速点击释放反应动力学(K 2〜10 4 m-1 s-1)而闻名,许多报告表明,TZ部分的反应性,
摘要:理解溶液中脂质的多态性是细胞内递送系统发展的关键。在这里,我们研究了聚(乙二醇)-lipid(PEG-脂质)共轭物的动力学,目的是更好地理解其分子特性和溶液中的聚集行为。这些PEG脂质用作脂质纳米颗粒(LNP)的成分。LNP正在通过对SARS-COV-2的现代疫苗接种策略中的利用来增加受欢迎程度。系统的表征是通过不同溶剂(例如乙醇和水)中的流体动力学的经典方法进行的,乙醇和水也通常用于LNP配方。我们能够阐明乙醇中分离的PEG脂质的结构相关的水动力特性,从而揭示了随机线圈聚合物的流体动力不变的典型预期值。凭借相同的实验环境,对水中的PEG脂质行为进行了很好的研究,对PEG脂质而言,这比乙醇不如乙醇。我们的实验表明,溶解在水中的PEG脂质形成良好的胶束,这些胶束可以定量地以它们的PEG-脂质聚合物Unimer的聚集程度,其水动力学大小和溶剂化,即对所识别的胶束的定量确定或与之相关。定量结果。我们通过实验证明胶束系统可以被视为可溶剂可渗透的水合球。■简介获得的扩散系数和流体动力大小与分析超速离心(AUC)数据得出的数值结果非常吻合。冷冻传输电子显微镜(Cryo-TEM)支持流体动力学研究的结构见解,特别是在观察到的形成胶束的球形结构方面。
聚乙烯乙二醇(PEG)过敏很少见,但可能很严重。PEG存在于辉瑞/Biontech Covid-19-19疫苗中,PEG过敏患者应由过敏症患者/免疫学家审查并进行相关测试。在某些过敏症患者/免疫学家的监督下,一些PEG过敏患者可能仍然能够接收辉瑞/Biontech Covid-19-Covid-19疫苗。但是,具有最严重的固定过敏形式的患者可能需要等待新的Covid疫苗可用,因为它们可能不含PEG(该数据尚未可用)。辉瑞/Biontech Covid-19疫苗是一种信使RNA(mRNA)疫苗。mRNA疫苗(辉瑞和现代)含有PEG(聚乙烯乙二醇)。Messenger RNA是一个大的亲水分子。它并不自然地进入细胞,因此这些疫苗被包裹在PEG纳米颗粒中,以促进其在细胞内的递送。PEG(也称为Macrogol)是一种在药物中广泛使用的亲水性聚合物。peg过敏会引起严重的反应,包括过敏反应和对PEG过敏的患者通常会在暴露于含有PEG的药物的情况下立即报告系统性反应。这是一种赋形剂,患者经常向含多种含有PEG的药物报告过敏。在许多疫苗中发现了多氧化盐80。它与PEG非常相似,它可能会与PEG“交叉反应”。多渗透压80例过敏患者应在接受辉瑞/比奥特技术Covid-19疫苗之前与过敏症/免疫学家讨论过敏。
致编辑:这封信的目的是简要介绍疫苗中辅料作为速发型超敏反应 (IHR) 的潜在原因,特别关注目前用于预防冠状病毒病 (COVID-19) 的疫苗制剂中的辅料,该疾病由严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 引起。疫苗的 IHR 通常由其制剂中所含的辅料引起。在某些情况下,之前对辅料的致敏是引起反应的原因,一项研究证实了对含明胶疫苗过敏的儿童的疫苗全身过敏反应与抗明胶 IgE 之间的关系 [1]。Sakaguchi 等人 [2] 报道了 4 名儿童因水痘疫苗中的明胶出现 IgE 介导的全身反应,其中 2 名儿童在接种疫苗后出现过敏反应,另外 2 名儿童出现全身性荨麻疹 [2]。辅料聚山梨醇酯 80 (PS80) 也与疫苗的 IHR 有关。在第三次接种含有 PS80 的四价人乳头瘤病毒疫苗 (Gardasil) 后,报告了一例过敏反应病例 [3]。聚山梨醇酯是聚乙二醇 (PEG) 衍生物,具体为 PEG 山梨醇 [4]。PEG 的分子式为 H(OCH2CH2)nOH(PubChem CID 174,https://pubchem. ncbi.nlm.nih.gov/compound/1_2-Ethanediol),由环氧乙烷聚合而成。所得聚合物的链长和分子量各不相同。除了聚山梨醇酯外,PEG 及其所有衍生物——包括 PEG 醚(月桂醇聚醚、鲸蜡醇聚醚、鲸蜡硬脂醇聚醚、油醇聚醚)、PEG 脂肪酸酯(PEG 月桂酸酯、二月桂酸酯、硬脂酸酯和二硬脂酸酯)、PEG 胺醚、PEG 蓖麻油、PEG-丙二醇共聚物(泊洛沙姆)和 PEG 大豆固醇——都是
摘要:开发了一种生态毒性评估(其ECO)的综合测试策略,以帮助使用Bivalve Mytilus SPP在海洋环境中沉积的工程纳米材料(ENM)的危害和命运评估。作为测试物种。以原始形式(Core)或功能化的涂层(聚乙烯乙二醇[PEG],羧基[COOH]和Ammonia [nh 3]),基于其生产水平和使用水平和使用水平和使用,以原始形式(CORE)或功能化涂料(PEG],羧基[COOH]和使用功能化的涂料(PEG)[PEG],羧基[COOH]和使用功能化的涂料(PEG),羧基[PEG],羧基[PEG] [PEG],羧基[PEG] [PEG],羧基[PEG] [PEG]),ENMS铜(II)(II)氧化物(II)(TiO 2)(TIO 2)。ITS ECO的第1层中的高吞吐量揭示了CuO ENMS会引起对贻贝血细胞溶酶体的细胞毒性作用,并具有危险的潜在Cuo PEG> Cuo Cooh> Cuo Cooh> Cuo NH 3> Cuo nh 3> Cuo Core,而不是cu 2 Enmeas 2 Enms cytoxic cytoxic。还看到了体内暴露后血细胞的遗传毒性以及贻贝的g孔细胞(48 h)对CuO ENM。在第2层(48 h - 21天)中的体内暴露更长的体内暴露显示CuO和TiO 2 ENM的亚急性和慢性氧化作用,在某些情况下导致脂质过氧化(Core TiO 2 ENMS)。在3层生物蓄积研究中,发现了Cu(主要是在g中)和Ti(主要是消化腺)以及不同核心和涂层ENM之间的不同摄取模式。明确发现对危害和命运的依赖性和涂层依赖性影响。总体而言,使用分层测试方法,ITS ECO能够区分不同组成和涂料的ENM所带来的危害(急性,亚急性和慢性效应),并为这些ENM的环境风险评估提供了有关命运的信息。环境毒素化学2022; 41:1390 - 1406。©2022作者。环境毒理学和化学由Wiley Wendericals LLC代表SETAC发表。
摘要:乳腺癌是女性最常见的癌症,人们一直致力于开发基于纳米药物的新型乳腺癌治疗方法。在本研究中,我们研究了计算机模拟姜黄素 (Cur) 的特性,发现了 Cur 的一些重要缺点。为了增强 Cur 的癌症治疗效果,使用三种不同的非离子表面活性剂(跨度 20、60 和 80)来制备各种载有 Cur 的囊泡 (Nio-Cur)。然后,用叶酸 (FA) 和聚乙二醇 (PEG) 修饰制备的 Nio-Cur 以抑制乳腺癌。对于 PEG-FA@Nio-Cur,Bax 和 p53 的基因表达水平高于游离药物和 Nio-Cur。使用 PEG-FA 装饰的 Nio-Cur,Bcl2 的水平低于游离药物和 Nio-Cur。当研究 PEG-FA@Nio-Cur 和 Nio-Cur 的 MCF7 和 4T1 细胞摄取测试时,结果表明 PEG-FA 修饰的囊泡表现出最明显的内吞作用。体外实验表明,PEG-FA@Nio-Cur 是一种很有前途的乳腺癌治疗中 Cur 递送策略。乳腺癌细胞吸收了制备的纳米制剂并表现出持续的药物释放特性。
在生物医学应用中聚乙烯乙二醇(PEG)的广泛使用导致了抗PEG抗体的出现,抗PEG抗体加速了全身性清除率并破坏了包括纳米医学(纳米医学)的pe节制系统的性能。抗体识别通常涉及疏水性PEG末端,强调需要对替代性最终功能化策略,从而增强亲水性的同时保持隐形特性。在这里,我们使用硫磺和五肽作为末端修饰引入了一种新颖的卵概念。将这些ylide-peg(ypegs)共轭物作为模型系统整合到聚合物纳米颗粒中,表明Ylide官能化维持关键的物理化学特性,例如ζ电位和防污行为。至关重要的是,具有单克隆IgM和IgG抗PEG抗体的抗体结合测定表明,Ylide末端可显着降低主链和特异性抗PEG抗体的识别。来自MPEG免疫化小鼠的多克隆抗PEG抗体的实验表明,增加Ylide末端的化学复杂性具有高度极性(但总体电荷中性的)有效预防的抗原性,可以防止抗原性延伸到终极,最终降低了PEG特定的识别。这种模块化且可扩展的策略为工程隐形功能化聚合物提供了新的范式,对纳米医学,生物材料和表面涂层具有广泛的影响。
聚合物是各种生物材料,通常应用于抗癌和抗菌剂的组织工程和载体中。有多种化学,生物学,医学和工业应用,用于聚乙烯乙二醇(PEG),一种水溶性聚醚。由PEG组成的聚合药物输送系统由于免疫原性,生物降解性,活性药物靶向和可持续的药物释放特征而具有许多优势。此外,该聚合物已成功地用于为各个身体部位的组织工程制备三维(3D)支架。是增加生物相容性和全身循环时间的关键步骤。此外,刺激性反应性和两亲性药物结合物基于PEG作为自组装的配方,例如胶束增强了细胞内药物的释放。在这篇综述中,我们试图提出并讨论与PEG在抗菌药物携带者和组织工程中的新应用相关的最新进展和挑战。