• 将上清液倒入含有 300 µl 异丙醇 >99% 的干净 1.5 ml 微管中 • 轻轻颠倒 50 次以混合样品 • 以 15,000 g 离心 1 分钟(DNA 应可见为小白色沉淀) • 弃去上清液并将管短暂排干在干净的吸水纸上。添加 500 µl 洗涤缓冲液并颠倒管数次以洗涤 DNA 沉淀 • 以 15,000 g 离心 1 分钟。小心弃去乙醇。 • 在室温下风干 10-15 分钟
在本应用注释中,我们展示了离心机CR22N如何进一步用于净化质粒DNA和PCR产物,这是体外转录的mRNA生产工作流程的第一步(图1)。为此,我们收集了一种含有质粒DNA的大细菌培养物,该培养物在Innova®S44I振动筛中生长。转子R9A2用于颗粒3 L细菌培养。使用转子R15A和转子R22A4的组合进行了一个1.5 L瓶中整个细胞膜的DNA纯化。最后,我们表明高质量的转录过程可以通过体外转录产生mRNA。
即使从 2030 年开始英国发电站全面投入使用 CCS 技术,‘生物能源/BECCS’ 情景对气候的影响也比英国 BECCS 工厂根本不存在时要小。这是因为,为了满足英国 BECCS 的木质颗粒需求而砍伐森林,与没有 BECCS 需求的反事实情况相比,森林从大气中去除碳的能力会降低,这种情况会持续到 2053 年左右。尽管从 2030 年开始,发电站会捕获 90% 的木质颗粒燃烧排放,但更密集的森林管理对森林碳封存能力的影响抵消了这一影响。
摘要近年来,可持续和生态粮食生产的发展引起了全球的兴趣。很明显,随着新的整合系统的发展,这种现象正在引起以水产养殖研究的变化。但是,仍然有必要了解综合系统中涉及的不同方面,包括虾和海藻等共培养系统。这项研究评估了绿色海藻作为食物来源对白虾penaeus vannamei肠道细菌群落的影响。虾:仅用颗粒(P)喂食,仅ulva Clathrata(UC),U。Clathrata + Pellet(UCP),仅ULVA LACTUCA(UL)(UL)和U. lactuca + lactuca + pellet(ULP)。在生长和生存方面,与对照(P)相比,ULP和UCP处理之间没有发现显着差异(P> 0.05)。对虾肠的细菌生物群的分析显示,与对照(P)相比,ULP,UL和UC中社区组成的显着差异(P <0.05)。我们发现,蛋白杆菌是所有治疗中最丰富的门,其次是用于UC,UCP和UL和UL和ULP治疗的细菌菌。虾只用海藻U. lactuca(UL,ULP)的rubritalea,lysinibacillus,acinetobacter和bellopopirellula的丰富度明显更高,用于U. Clathrata治疗(UC,UCP),是litoreibacter。对照(P)中颤动的相对丰度更高,显示出UC和UL处理的减少。我们的发现可以更好地了解综合的水产养殖系统,特别是那些利用海藻作为天然饲料来源的水产养殖系统。
将位于奥里萨邦安古尔的钢铁厂设施从每年 500 万吨球团和每年 310 万吨轧机扩建为每年 1920 万吨的综合钢铁厂和每年 1250 万吨的水泥厂
在许多国家,炉灶和锅炉(<100 kW)中燃烧固体生物燃料对住宅的空间和生活热水供应做出了巨大贡献。它为空间和热水供应提供了一种非电气化的能源,有助于维持电网的可靠性,以应对未来不同行业日益增长的需求。它还可以通过使用本地和可持续来源的生物质资源,为许多社区提供区域能源安全。它可以与其他供暖技术相结合,例如空气对空气热泵和太阳能供暖,以最佳方式满足全年的热量需求。住宅供暖应用中常用的固体生物燃料和器具类型包括木炉、嵌入式炉灶和木柴锅炉中的木柴以及颗粒炉和颗粒锅炉中的木质颗粒(图 1)。