摘要:胆管癌 (CCA) 预后不良。CCA 患者的中位生存期从诊断开始不到 2 年,全球 5 年生存率仅为 10%。传统上,无法切除的晚期 CCA 的一线化疗药物为吉西他滨加顺铂。近年来,由于创新的下一代测序技术,精准医疗已成为主流的癌症治疗方法。在 CCA 中发现了几种基因改变,包括突变、基因融合和拷贝数变异。在这篇综述中,我们总结了目前对 CCA 基因分析和 CCA 靶向治疗的理解。由于 CCA 的高度异质性、肿瘤微环境因素和肿瘤生物学的复杂性,目前仅 pemigatinib、infigratinib、ivosidenib、larotrbctinib 和 entrectinib 被批准用于治疗成纤维细胞生长因子受体 2 基因 (FGFR2) 融合、异柠檬酸脱氢酶基因 (IDH1) 突变和神经营养因子受体酪氨酸激酶基因 (NRTK) 融合的 CCA 患者。其他靶向疗法,包括其他 FGFR2 抑制剂、PI3K/AKT/mTOR 抑制剂和 BRAF 定向靶向疗法,已被讨论用于治疗 CCA,免疫检查点抑制剂,特别是 pembrolizumab,可以用于治疗微卫星不稳定性高的肿瘤患者。CCA 治疗的精准医学疗法需要进一步改进,并讨论已获批和潜在的 CCA 靶向疗法。
胆管癌 (CCA) 是一组罕见且侵袭性的肝胆道恶性肿瘤,包括肝外胆管癌 (eCCA) 和肝内胆管癌 (iCCA),前者进一步细分为远端胆管癌 (dCCA) 和肝门部胆管癌 (pCCA) [ 1 , 2 ]。值得注意的是,这些亚组不仅来自胆道系统的不同解剖位置,而且在预后、病因、生物学和流行病学方面也存在显著差异 [ 3 , 4 ]。在过去十年中,下一代测序技术的出现为识别 CCA 的重要分子特征铺平了道路,大量报告观察到特定 CCA 亚型独有的基因畸变 [ 5 , 6 ]。这些发现导致了多种分子靶向疗法的开发,大约 50% 的 CCA 患者携带潜在可用药物治疗的异常 [ 7 , 8 ]。事实上,已经描述了许多潜在的治疗靶点,包括成纤维细胞生长因子受体 (FGFR) 融合、异柠檬酸脱氢酶 (IDH)-1 突变、BRAF 突变和神经营养酪氨酸激酶 (NTRK) 基因融合 [ 9 – 12 ]。关于 FGFR 靶向药物,FGFR1、FGFR2 和 FGFR3 抑制剂 pemigatinib 于 2020 年 4 月获得美国食品药品监督管理局 (FDA) 批准,用于治疗携带 FGFR2 融合或重排的既往接受过治疗的 CCA 患者 [ 13 – 15 ]。此次批准基于 II 期 FIGHT-202 临床试验的结果。该试验显示,pemigatinib 的总体反应率 (ORR) 为 35%,中位总生存期 (OS) 为 21.1 个月,中位随访期为 17.8 个月 [ 16 ]。此外,其他几种 FGFR 抑制剂正在接受评估,目前在 CCA 患者中处于不同的开发阶段,包括 derazantinib、infigratinib 和 futibatinib,其中后者最近在 FOENIX-CCA2 临床试验中显示 ORR 为 37.3%,中位反应持续时间为 8.3 个月 [ 17 – 19 ]。同样,IDH 抑制剂也在 CCA 中进行研究,大约 13–15% 的 iCCA 患者会出现 IDH-1 突变 [ 20 ]。最近发表的 ClarIDHy III 期试验比较了 IDH-1 抑制剂 ivosidenib 与安慰剂在已接受过两线全身治疗的 IDH-1 突变型 CCA 中的疗效 [ 21 ]。值得注意的是,与安慰剂组相比,ivosidenib 组的无进展生存期 (PFS) 有所改善,中位 PFS 分别为 2.7 个月和 1.4 个月(风险比 (HR) 0.37;95% 置信区间 (CI) 0.25–0.54;单侧 p < 0.0001),并且 OS 呈优先趋势。此外,其他几种分子靶向治疗最近也报告了有趣的结果,II 期 ROAR 试验的结果就证明了这一点,该试验评估了达拉非尼联合曲美替尼治疗 BRAF V600E 突变型 CCA 患者的效果 [ 22, 23 ];而且,大量 I 期至 III 期临床试验正在评估新型靶向疗法,作为单一疗法或与其他抗癌药物联合使用,并可能在未来几年进一步改变 CCA 的治疗前景 [ 24 , 25 ]。然而,仍有一些重要问题有待解决。首先,靶向治疗的疗效在很大程度上受到获得性耐药性的限制,而继发性多克隆突变在这种情况下是一个显著的挑战 [ 26 , 27 ]。因此,
癌症是一大批疾病,由于人类细胞中许多不同基因的无法控制的作用,主要出现了。 有可能导致癌症发展的基因融合,缺失,扩增,过表达和其他异常。 癌症发育中的一组罪魁祸首是蛋白激酶,蛋白激酶是催化蛋白质磷酸化的大型酶。 人类基因组包含500多个蛋白激酶基因。 激酶调节各种细胞功能,例如增殖,细胞周期,凋亡,分化等。 [1]。 激酶活性的放松管制会导致这些过程的惊人变化,对于癌细胞的存活和传播可能很重要[2]。 因此,许多激酶正在被研究为药物靶标,例如ABL [3] CDKS [4-6],ERBB2(HER2)[7],Aurks [8,9],MAPKS [10]等。 许多药物(即小分子抑制剂或单克隆抗体)已经获得了卫生与公共服务部联邦机构美国食品和药物管理局(FDA)的批准。 此类其他许多药物都在临床试验或临床前开发中。 在这篇评论中,我们将讨论FDA在2020年批准的药物。 avapritinib(Blu-285)(品牌名称Ayvakit)(图1 A)于2020年1月9日获得FDA批准,用于治疗无法切除或转移性胃肠道基质肿瘤(GIST)。 它用作对人PDGFRA受体激酶的抑制剂,该疾病中有D842V突变。癌症是一大批疾病,由于人类细胞中许多不同基因的无法控制的作用,主要出现了。有可能导致癌症发展的基因融合,缺失,扩增,过表达和其他异常。癌症发育中的一组罪魁祸首是蛋白激酶,蛋白激酶是催化蛋白质磷酸化的大型酶。人类基因组包含500多个蛋白激酶基因。激酶调节各种细胞功能,例如增殖,细胞周期,凋亡,分化等。[1]。激酶活性的放松管制会导致这些过程的惊人变化,对于癌细胞的存活和传播可能很重要[2]。因此,许多激酶正在被研究为药物靶标,例如ABL [3] CDKS [4-6],ERBB2(HER2)[7],Aurks [8,9],MAPKS [10]等。许多药物(即小分子抑制剂或单克隆抗体)已经获得了卫生与公共服务部联邦机构美国食品和药物管理局(FDA)的批准。此类其他许多药物都在临床试验或临床前开发中。在这篇评论中,我们将讨论FDA在2020年批准的药物。avapritinib(Blu-285)(品牌名称Ayvakit)(图1 A)于2020年1月9日获得FDA批准,用于治疗无法切除或转移性胃肠道基质肿瘤(GIST)。它用作对人PDGFRA受体激酶的抑制剂,该疾病中有D842V突变。该决定取决于Nav-Igator(NCT02508532)的结果,这是一项多中心,单臂,开放标签试验,招募了43例携带PDGFRA外显子18突变的患者,其中包括38例PDGFRA D842V突变患者[11]。selumetinib(AZD6244,Arry-142886)(品牌Koselugo)(图1 A)由FDA于2020年4月10日证明,用于治疗I型神经纤维瘤I型(NF1),这会导致沿着大脑的肿瘤的生长以及其他部分的肿瘤生长。它被用作对具有V600E突变的BRAF激酶的抑制剂。该决定取决于50名2-18岁儿童的临床试验(NCT01362803)的结果[12]。tucatinib(ONT-380,Arry-380)(品牌Tukysa)(图1 A)于2020年4月17日批准了FDA,用于治疗不可切除或转移性的HER2阳性乳腺癌。它被用作人ERBB2受体激酶的抑制剂。该决定是根据HER2CLIMB临床试验的结果(NCT02614794)做出的,这是一项关于Tucatinib与安慰剂的研究,并与Capecitabine和Trastuzumab结合使用,招募了612名患者[13]。pemigatinib(incb054828)(品牌pemazyre)(图1 A)于2020年4月17日批准了FDA,用于治疗高级/转移性或外科手术无法切除的胆管癌。它用作人FGFR2受体激酶的抑制剂。