hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
背景:胰岛素调节的氨基肽酶(IRAP)参与胰岛素敏感性和葡萄糖代谢,在2型糖尿病的病理生理中很重要。血清IRAP水平与2型糖尿病和胰岛素抵抗密切相关。这项研究的目的是评估IRAP水平作为妊娠糖尿病(GDM)妇女早期诊断和管理胰岛素抵抗的潜在生物标志物。方法:这项队列研究包括40名GDM女性和40名健康妊娠女性。母体血清IRAP水平,并在两组之间进行比较。结果:与对照组(0.92±0.10 ng/ml)相比,GDM组的平均血清IRAP水平明显降低(0.73±0.12 ng/ml)(p = 0.001)。成对比较表明,经过修饰和胰岛素治疗的GDM亚组的血清IRAP水平明显低于对照组(分别为p <0.017和p <0.017)。血清IRAP水平与禁食葡萄糖,胰岛素,稳态模型耐药性(HOMA-IR)水平和血红蛋白A1C(HBA1C)(r = –0.541,P = 0.001; r = 0.001; r = –0.447,p = 0.001; r = 0.584,p = –0.584,P = –0.584,P = 0.001; R = 0.001; 0.001)。最佳血清IRAP截止值计算为0.857 ng/ml,灵敏度为85%,对于GDM的预测,特异性为80%(p = 0.001)。结论:被诊断为GDM的孕妇的血清IRAP水平明显低于健康孕妇。此外,血清IRAP水平与胰岛素,HBA1C和HOMA-IR的水平负相关。这些发现表明,低血清IRAP水平可能是预测GDM的新型生物标志物。临床试验注册:该研究已在https://classic.clinicaltrials.gov/上注册(注册号:NCT06716320)。
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2024年12月30日。 https://doi.org/10.1101/2024.12.30.630763 doi:Biorxiv Preprint
来自大型随机对照试验的心血管结局数据•TECOS评估了患有既定心血管疾病的T2DM患者的西他列汀与安慰剂的心血管安全性。中位随访3年后,西他列汀添加到通常的护理中时,与没有西他列汀患者在T2DM患者的情况下,与常规护理相比,与常规护理相比,心力衰竭的重大不良心脏病风险或出院的风险。•Carmelina评估了T2DM患者的Linagliptin与安慰剂的心血管和肾脏安全性,并以已建立的大血管或肾脏疾病病史证明的CV风险增加。中位随访2。2年后,Linagliptin添加到通常的护理中时,并没有增加发生重大不良心血管事件或肾脏结局事件的风险。与没有Linagliptin的T2DM患者相比,与常规护理相比,住院治疗的风险没有增加。•检查对T2DM患者和最近的急性冠状动脉综合征的患者,除了护理标准外,还检查了Alogliptin对安慰剂的心血管安全性。中位随访18个月后,与安慰剂相比,阿洛格汀的主要不良心血管事件发生率并未增加。•品尝timi 53评估了萨克萨拉汀的心血管疗效和安全性,当在患有心血管事件高风险(已建立的心血管疾病和/或多种危险因素)的T2DM患者中添加到护理标准中。中位随访2年后,萨克萨拉汀没有增加或降低缺血事件的发生率,尽管心力衰竭的住院率增加了。
n-脱绿素是位于蛋白质N末端的短序列,可介导E3连接酶(E3S)与底物的相互作用以促进其蛋白水解。可以很好地确定,可以在蛋白酶裂解后暴露于n-脱绿素,以允许E3识别。但是,我们关于蛋白质和E3如何在蛋白质质量控制机制中合作的知识仍然很少。使用系统的方法监测N末端组文库的蛋白质稳定性,我们发现第三n末端位置(以下简称“ P+3”)的脯氨酸残基会促进不稳定性。遗传扰动鉴定出二肽基肽酶DPP8和DPP9以及N-Degron途径的主要E3S,UBR蛋白,是P+3轴承底物的调节剂。有趣的是,P+3 UBR底物对分泌蛋白显着富集。我们发现,分泌蛋白依赖于信号肽(SP)的靶向蛋白包含其SP中的“内置” N-Degron。此Degron在易位失败到指定的隔室后被DPP8/9暴露,从而使UBR可以清除错误定位的蛋白质。
1北京实验室,生命实验室科学,乌普萨拉大学生物医学中心药物学系,P.O。Box 574,SE-751 23 Uppsala,瑞典; jgbeveridge@gmail.com(J.B。); mats.larhed@ilk.uu.se(M.L。) 2荷兰的Kloosterstraat 9,5349 Ab Oss的Pivot Park筛选中心; saman.honarnejad@ppscreeningcentre.com(S.H. ); maiky103@hotmail.com(m.b。) 3 Bioascent Discovery Ltd.,Bo'ness Road,Newhouse,Motherwell ML1 5UH,英国; gbaillie@bioascent.com(g.l.b。 ); smcelroy@bioascent.com(s.p.m. ); pjones@bioascent.com(P.S.J. ); Amorrison@bioascent.com(A.M.)4北京实验室,北美大学的生物科学和成瘾研究系,Uppsala University,P.O。 Box 591,SE-751 24 Uppsala,瑞典; Mathias.hallberg@uu.se *通信:johan.gising@angstrom.uu.se;电话。 : +46-70-2868001Box 574,SE-751 23 Uppsala,瑞典; jgbeveridge@gmail.com(J.B。); mats.larhed@ilk.uu.se(M.L。)2荷兰的Kloosterstraat 9,5349 Ab Oss的Pivot Park筛选中心; saman.honarnejad@ppscreeningcentre.com(S.H.); maiky103@hotmail.com(m.b。)3 Bioascent Discovery Ltd.,Bo'ness Road,Newhouse,Motherwell ML1 5UH,英国; gbaillie@bioascent.com(g.l.b。); smcelroy@bioascent.com(s.p.m.); pjones@bioascent.com(P.S.J.); Amorrison@bioascent.com(A.M.)4北京实验室,北美大学的生物科学和成瘾研究系,Uppsala University,P.O。Box 591,SE-751 24 Uppsala,瑞典; Mathias.hallberg@uu.se *通信:johan.gising@angstrom.uu.se;电话。 : +46-70-2868001Box 591,SE-751 24 Uppsala,瑞典; Mathias.hallberg@uu.se *通信:johan.gising@angstrom.uu.se;电话。: +46-70-2868001
丝氨酸蛋白酶抑制剂(SERPINS)是最多,广泛的多功能蛋白酶抑制剂超家族,并由所有真核生物表达。serpin E2(丝氨酸肽酶抑制剂,成员2),丝氨酸蛋白酶抑制剂超家族的成员是一种有效的内源性凝血酶抑制剂,主要在细胞外基质和血浆中发现,并且在许多细胞类型中以许多器官和分泌表示。SERPIN E2的多种功能主要是通过调节尿激酶型纤溶酶原激活剂(UPA,也称为PLAU),组织型纤溶酶原激活剂(TPA,也称为PLAT),以及基质金属蛋白酶活性,并包括止血,细胞粘附,促销和促销。从参与众多生理和病理过程中,Serpin E2的重要性是明显的。在这篇综述中,我们总结了Serpin E2基因和蛋白质的结构特征及其作用生理和疾病。
1,Uppsala大学,BMC,P.O。 Box 574,SE-751 23 Uppsala,瑞典; karin.engen@gmail.com(K.E。 ); ulrika.rosenstrom@ilk.uu.se(U.R.) 2瑞典化学生物学联盟(CBCS),生命实验室科学,医学生物化学和生物物理学系,化学生物学和基因组工程科,Karolinska Institutet,Tomtebodavägen23A,SE-171 65 SOLNA,SE-171 65 SOL,瑞典; thomas.lundback@astrazeneca.com(T.L. ); Annika.jensen@scilifelab.se(A.J.-J。) 3机械和结构生物学,发现科学,R&D,阿斯利康,SE-43183Mölndal,瑞典4北京大学,北京大学,北京大学,生命实验室科学,乌普萨拉大学药物学系,乌普萨拉大学,BMC,P.O。 Box 574,SE-751 23 Uppsala,瑞典; anubha.yadav@ilk.uu.se(A.Y。 ); sharathna.puthiyaparambath@ilk.uu.se(S.P. ); johan.gising@ilk.uu.se(J.G。) 5北京实验室,药物生物科学系,神经药理学与成瘾研究,Uppsala University,BMC,P.O。 Box 591,SE-751 24 Uppsala,瑞典; Mathias.hallberg@uu.se *通信:mats.larhed@ilk.uu.se;电话。 : +46-70-49353831,Uppsala大学,BMC,P.O。Box 574,SE-751 23 Uppsala,瑞典; karin.engen@gmail.com(K.E。 ); ulrika.rosenstrom@ilk.uu.se(U.R.) 2瑞典化学生物学联盟(CBCS),生命实验室科学,医学生物化学和生物物理学系,化学生物学和基因组工程科,Karolinska Institutet,Tomtebodavägen23A,SE-171 65 SOLNA,SE-171 65 SOL,瑞典; thomas.lundback@astrazeneca.com(T.L. ); Annika.jensen@scilifelab.se(A.J.-J。) 3机械和结构生物学,发现科学,R&D,阿斯利康,SE-43183Mölndal,瑞典4北京大学,北京大学,北京大学,生命实验室科学,乌普萨拉大学药物学系,乌普萨拉大学,BMC,P.O。 Box 574,SE-751 23 Uppsala,瑞典; anubha.yadav@ilk.uu.se(A.Y。 ); sharathna.puthiyaparambath@ilk.uu.se(S.P. ); johan.gising@ilk.uu.se(J.G。) 5北京实验室,药物生物科学系,神经药理学与成瘾研究,Uppsala University,BMC,P.O。 Box 591,SE-751 24 Uppsala,瑞典; Mathias.hallberg@uu.se *通信:mats.larhed@ilk.uu.se;电话。 : +46-70-4935383Box 574,SE-751 23 Uppsala,瑞典; karin.engen@gmail.com(K.E。); ulrika.rosenstrom@ilk.uu.se(U.R.)2瑞典化学生物学联盟(CBCS),生命实验室科学,医学生物化学和生物物理学系,化学生物学和基因组工程科,Karolinska Institutet,Tomtebodavägen23A,SE-171 65 SOLNA,SE-171 65 SOL,瑞典; thomas.lundback@astrazeneca.com(T.L.); Annika.jensen@scilifelab.se(A.J.-J。)3机械和结构生物学,发现科学,R&D,阿斯利康,SE-43183Mölndal,瑞典4北京大学,北京大学,北京大学,生命实验室科学,乌普萨拉大学药物学系,乌普萨拉大学,BMC,P.O。Box 574,SE-751 23 Uppsala,瑞典; anubha.yadav@ilk.uu.se(A.Y。 ); sharathna.puthiyaparambath@ilk.uu.se(S.P. ); johan.gising@ilk.uu.se(J.G。) 5北京实验室,药物生物科学系,神经药理学与成瘾研究,Uppsala University,BMC,P.O。 Box 591,SE-751 24 Uppsala,瑞典; Mathias.hallberg@uu.se *通信:mats.larhed@ilk.uu.se;电话。 : +46-70-4935383Box 574,SE-751 23 Uppsala,瑞典; anubha.yadav@ilk.uu.se(A.Y。); sharathna.puthiyaparambath@ilk.uu.se(S.P.); johan.gising@ilk.uu.se(J.G。)5北京实验室,药物生物科学系,神经药理学与成瘾研究,Uppsala University,BMC,P.O。Box 591,SE-751 24 Uppsala,瑞典; Mathias.hallberg@uu.se *通信:mats.larhed@ilk.uu.se;电话。 : +46-70-4935383Box 591,SE-751 24 Uppsala,瑞典; Mathias.hallberg@uu.se *通信:mats.larhed@ilk.uu.se;电话。: +46-70-4935383
脑和淀粉样蛋白发生的胰岛素抵抗是与糖尿病相关的认知下降和阿尔茨海默氏病(AD)发育的主要病理特征。越来越多的证据表明,在糖尿病患者中维持葡萄糖对防止AD发育是有益的。二肽基肽酶4抑制剂(DDP4IS)是一类新型葡萄糖降低药物,通过增加胰岛素排泄并降低胰甘蓝素水平,在最近的研究中显示了神经保护潜力。本评论巩固了早期和新研究的现有证据,这些研究调查了DPP4I使用,AD和其他认知结果之间的关联。超出DPP4I的有益于减轻胰岛素抵抗和降解葡萄糖的降低,对潜在的DPP4I药物的潜在神经保护的基本机制被分类为以下各节:(Ferrari等人,Physiol et al。,Physiol et al。 β-淀粉样斑块的形成,并减少神经斑纹的形成; DPP4I增加了神经保护性DPP4底物的生物活性,包括胰高血糖素样肽-1(GLP-1),依赖性葡萄糖胰岛素肽(GIP)和基质衍生的因子-1α(SDF-1α)等; DPP4I对神经元细胞和脑内结构的多效作用,包括抗炎性,抗氧化和抗凋亡。我们进一步重新审视了最近发表的流行病学研究,这些研究提供了支持性数据以补充临床前证据。证据有助于告知未来临床研究和指导基于证据的临床实践的理由。鉴于缺乏完整的随机试验,旨在评估DPP4I在防止AD开发和进展方面的影响,因此预计该综述将提供对DPP4抑制作用的有用见解,作为预防AD预防和治疗的潜在治疗靶标。