本文档是公认的手稿版本的已发表作品,其最终形式以ACS药物化学信函出现,版权所有©美国化学学会后,在同行评审和发行者的技术编辑后。要访问最终编辑和发布的工作,请参见https://doi.org/10.1021/acsmedchemlett.0c00657
自从近一个世纪前第一种抗生素被发现以来,抗生素已经改变了全球的医学。然而,几乎与每种抗生素被广泛使用一样快,耐药性也使许多这些抗菌药物的临床实用性黯然失色(Aslam 等人,2018 年;Zaman 等人,2017 年)。对大多数(如果不是全部)可用抗生素具有耐药性的病原体正在定期识别,例如耐药性淋病奈瑟菌、鲍曼不动杆菌和耳念珠菌,美国疾病控制中心将这些细菌列为紧急威胁(CDC 2019)。随着时间的推移,新抗生素的开发速度已经放缓。制药公司传统上主导着抗生素的研究和开发,但由于缺乏长期成功以及将新药推向市场的经济回报低,许多公司放弃了努力(Jackson 等人,2018 年)。目前迫切需要解决耐药问题,八个中只有两个
欧洲和日本市场,有100多种肽药物用于治疗各种疾病。2在财务上,肽市场有利可图,因为估计到2019年每年价值11-1.6亿。2但是,与传统方法相比,制药行业要使肽采用更绿色的肽合成技术来使肽上市仍然存在重大挑战。肽还可以采用多功能方法 - 除了具有生物活性外,它们在将碳传输到所需靶标方面也很棒。他们在目标治疗中的使用是一个令人兴奋的研究领域,未来具有巨大的希望,特别关注但不限于肿瘤学。目睹当前对许多抗体 - 药物缀合物(ADC)的投资,等效的肽 - 药物缀合物(PDC)对在这种情况下使用肽使用的未来有希望。本综述将强调肽的卓越和局限性,这些肽在PDC中用于推进靶向癌症治疗剂,并将考虑特定的肿瘤微环境如何帮助设计PDC。此外,审查还对
1 利物浦约翰摩尔斯大学药学与生物分子科学学院,拜伦街,利物浦 L3 3AF,英国 2 曼彻斯特大学药学与验光学系,斯托普福德大厦牛津路,曼彻斯特 M13 9PT,英国 3 剑桥创新技术咨询(CITC)有限公司,圣约翰创新中心,考利路,剑桥,CB4 0WS,英国 4 剑桥大学临床神经科学系,Clifford Allbutt 大厦 - 剑桥生物科学园区和 NIHR 生物医学研究中心,Hills Road,CB2 0HA 剑桥,英国 5 赫瑞瓦特大学工程与物理科学学院,威廉珀金大厦,爱丁堡,EH14 4AS,英国 6 彼得伯勒市医院血液学系,伊迪丝卡维尔园区,布雷顿门彼得伯勒,PE3 9GZ,彼得伯勒,英国 7 生物医学研究所(IRB 巴塞罗那),巴塞罗那科学技术研究所(BIST),Baldiri Reixac 10,巴塞罗那 08028,西班牙
4相反,肿瘤细胞在重复给药后可能会对这些药物产生耐药性,导致肿瘤复发和进展。5因此,探索创新有效的抗肿瘤治疗方法势在必行。水凝胶是一种能在水中膨胀但不溶于水的三维网络聚合物,根据原料来源不同,可分为天然水凝胶(由透明质酸、胶原蛋白、海藻酸钠、多肽等组成)和合成水凝胶(包括聚丙烯酰胺、聚乙二醇等)。6肽水凝胶是通过天然氨基酸脱水缩合而自组装的,具有良好的生物相容性和代谢特性。7它们出色的保水性能和网格状结构使这些材料能够模拟细胞生长条件,同时促进各种生物活性物质和药物的输送。8此外,自组装
摘要:纳米颗粒单层阵列的二维(2D)同质组装到广泛的底物上构成了化学,纳米技术和材料科学的重要挑战。α-突触核蛋白(αs)是一种与神经元蛋白复合物相关的内在无序蛋白,具有高度的结构可塑性和伴侣活性。αs的c-末端结构域已与该蛋白与生物学靶标的非共价相互作用以及突触前连接中αs的活性有关。在此,我们已经系统地研究了αs的伴侣活性C末端序列的肽片段,并鉴定了一种17个沉积的肽,该肽保留了αs的多功能结合性质。这种短肽在金纳米颗粒上的附着提供了胶体稳定的纳米颗粒悬浮液,允许将偶联物的均匀2D粘附到各种表面上,包括形成结晶纳米粒子超级层次。此处报告的肽序列和策略描述了一种新的金属纳米颗粒单层粘附的粘附分子,并将垫脚石设置为αs粘附特性的潜在应用。
使用ALK酪氨酸激酶抑制剂(TKIS)治疗的肿瘤性淋巴瘤激酶(ALK)重新培养的非小细胞肺癌(NSCLC),但缺乏免疫检查点抑制剂(ICIS)的活性知之甚少。在这里,我们鉴定了免疫原性的ALK肽,以表明ICIS诱导了对aNK中Alk+肿瘤的排斥反应,而不是在肺中。单肽疫苗接种恢复了ALK特异性CD8+ T细胞的启动,根除肺肿瘤与ALK TKIS结合使用,并防止了将肿瘤转移到大脑的转移性。ALK+ NSCLC对ICI的反应不佳是由于针对ALK抗原的CD8+ T细胞启动无效,并且通过特定的疫苗接种而避免了。最后,我们确定了由HLA-A*02:01和HLA-B*07:02分子显示的人类ALK肽。这些肽在HLA-转基因小鼠中是免疫原性的,并被NSCLC个体的CD8+ T细胞识别,为开发临床疫苗以治疗ALK+ NSCLC铺平了道路。
近几十年来,治疗性肽已被证明具有巨大的药用价值和潜力。然而,人工智能辅助肽药发现的方法尚未充分探索。为了填补这一空白,我们提出了一种基于环面流形上的条件流匹配的靶标感知肽设计方法(PPF LOW),为肽结构设计建模扭转角的内部几何形状。此外,我们建立了一个名为PPBench2024的蛋白质-肽结合数据集,以填补基于结构的肽药物设计任务的海量数据空白并允许深度学习方法的训练。大量实验表明,与基线模型相比,PPF LOW 在肽药物生成和优化任务中达到了最先进的性能,并且可以推广到包括对接和侧链包装在内的其他任务。
摘要 前列腺癌是一种全球性疾病,对生活质量产生负面影响。尽管已经开发出各种针对前列腺癌的策略,但只有少数策略实现了肿瘤特异性靶向。因此,人们特别重视使用纳米载体包裹的化疗药物与肿瘤归巢肽结合来治疗癌症。将药物与纳米技术相结合的靶向策略有助于克服最常见的障碍,例如高毒性和副作用。前列腺特异性膜抗原已成为前列腺癌的有希望的靶分子,并被 GRFLTGGTGRLLRIS 肽(称为肽 563 (P563))以高亲和力靶向。在这里,我们旨在评估 P563 结合的多西紫杉醇 (DTX) 负载聚合物胶束纳米粒子 (P563-PEtOx-co-PEI 30%-b-PCL-DTX) 对前列腺癌的体外和体内靶向效率、安全性和有效性。为此,我们使用 PNT1A 和 22Rv1 细胞通过细胞增殖试验分析了 P563-PEtOx- co -PEI 30% -b- PCL 和 P563-PEtOx- co -PEI 30% -b- PCL-DTX 的细胞毒活性。我们还通过流式细胞术确定了 P563-PEtOx- co -PEI 30% -b- PCL-FITC 的靶向选择性,并通过蛋白质印迹和 TUNEL 试验评估了 P563-PEtOx- co -PEI 30% - b- PCL-DTX 在 22Rv1 细胞中的细胞死亡诱导。为了研究体内疗效,我们将游离形式或聚合物胶束纳米颗粒中的 DTX 施用于无胸腺 CD-1 nu/nu 小鼠 22Rv1 异种移植模型,并进行了组织病理学分析。我们的研究表明,用 P563 共轭 PEtOx-co-PEI 30%-b-PCL 聚合物胶束针对前列腺癌可以发挥强大的抗癌活性,且副作用较小。
目前可用于治疗转移性、进展性放射性碘 (RAI) 难治性分化型甲状腺癌 (DTC) 和髓样甲状腺癌 (MTC) 的治疗方案有限。虽然有几种全身靶向疗法(如酪氨酸激酶抑制剂)正在评估和实施用于治疗这些癌症,但这些疗法与严重的、有时甚至危及生命的不良事件有关。肽受体放射性核素治疗 (PRRT) 有可能成为治疗生长抑素受体 (SSTR)+ RAI 难治性 DTC 和 MTC 患者的有效且安全的方式。MTC 和某些 RAI 难治性 DTC 亚型(如对常规治疗方式反应较差的 Hürthle 细胞癌)已证明对 PRRT 治疗有良好的反应。虽然目前的文献为 PRRT 在甲状腺癌中的应用带来了希望,但该领域的几个方面仍有待进一步研究,尤其是与其他系统性靶向疗法的直接比较。在这篇综述中,我们全面展望了当前使用各种 PRRT 的转化和临床数据,包括生长抑素类似物的诊断效用、PRRT 的治疗诊断特性以及未来研究的潜在领域。