摘要:锂离子电池电极通常是通过泥浆铸造来制造的,浆液铸造涉及在溶剂中混合活性材料颗粒,导电碳和聚合物粘合剂,然后在电流收集器(Al或Cu)上铸造并烘干涂层(AL或CU)。这些电极的功能性,但在孔网络渗透,电子连接性和机械稳定性方面仍然有限,导致循环时电子/离子电导率和机械完整性较差,从而导致电池降解。为了解决这个问题,我们通过静电纺丝和热解的结合来制造类似毛状的碳 - 铁织物。与浆液铸fe 2 O 3和基于石墨的电极相比,对于半细胞和完整的细胞测试,碳 - 铁织物(CMF)电极提供了增强的高速容量(10C及以上)和稳定性(后者均具有标准锂镍含量镍含量的含量含量液化液含量含量液化液含量(LNMO))。此外,CMF是独立且轻巧的;因此,未来的研究可能包括将其缩放为小袋细胞的阳极材料和18,650个圆柱电池。关键字:锂离子电池,碳 - 金属织物,电纺,独立电极,电流收集器
摘要:聚二甲基硅氧烷(PDMS)已成为植入传感器中介电层的有前途的候选者,由于其出色的生物相容性,稳定性和柔韧性。这项研究涉及一种创新的方法来产生石墨烯增强的PDMS(GR-PDMS),在该方法中,将石墨粉末剥落成聚合物溶液中的单层和几层石墨烯片中,目前与PDMS形成交联。该方法在聚合物基质中产生均匀分布的石墨烯,并在石墨烯和PDM之间进行了改进的接口,从而显着降低了PDMS中石墨烯的渗透阈值从10%降低到5%。合成的GR-PDMS表现出改善的机械性和电气性能,测试了潜在的电容压力传感器。结果表明,令人印象深刻的压力灵敏度高达0.0273 kPa -1,比原始PDM的压力敏感性高45倍,比报道的文献值高2.5倍。GR-PDMS展示了出色的压力感应能力和稳定性,从而满足了植入颅内压(ICP)传感器的要求。
•Kul-在查mu和喜马al尔邦常见,这些是将水从冰川到村庄的转移渠道。•Virdas-由古吉拉特邦Kutch的Rann的游牧部落开发,这些是在自然抑郁症中挖出的浅井(例如Jheel)。 由于周围的区域是非常盐水,当雨水从土壤中渗出时,由于盐度的差异(雨水的密度较小),它会在盐水地下水上收集。 •在梅加拉亚邦实行的竹滴灌溉系统这种节水系统是使用竹管完成的。 整个灌溉系统由不同形式的不同形式的横截面的竹管组成,这些竹管从山顶的泉水中吸收了水。 水被滴在植物的底部,以防止浪费水。 •Johads-新月形形状的小型支票坝从地球和岩石上建造到拦截和保护雨水。 主要在拉贾斯坦邦的阿尔瓦尔地区发现,这有助于改善渗透并增加地下水充电。Jheel)。由于周围的区域是非常盐水,当雨水从土壤中渗出时,由于盐度的差异(雨水的密度较小),它会在盐水地下水上收集。•在梅加拉亚邦实行的竹滴灌溉系统这种节水系统是使用竹管完成的。整个灌溉系统由不同形式的不同形式的横截面的竹管组成,这些竹管从山顶的泉水中吸收了水。水被滴在植物的底部,以防止浪费水。•Johads-新月形形状的小型支票坝从地球和岩石上建造到拦截和保护雨水。主要在拉贾斯坦邦的阿尔瓦尔地区发现,这有助于改善渗透并增加地下水充电。
这项研究旨在开发一种基于形态学的模型,以预测聚合物与相分离结构的聚合物混合物的模量和拉伸强度。分析模型采用了打结和互连的骨骼结构(KISS)模型的几何方法,结合了不混合聚合物混合物的形态变化和组件的渗透阈值。通过假设各个形态态的特定厚度的薄界面层,可以解释聚合物/聚合物界面对机械性能的影响。使用IPP/PA,PP/PET和LDPE/PP聚合物混合物的实验数据评估了所提出的模型的预测能力,这些数据来自现有文献。结果在预测数据和观察到的数据之间建立了合理的规定。该模型的预测也与已建立的抗拉强度和杨氏混合物混合物模量的模型的预测进行了比较,这表明了其有效性。将界面区域纳入机械性能的建模过程中代表了所提出的模型的关键区别特征,从而增强了其与聚合物混合物的实际微结构的兼容性。此外,该模型对相对简单的数学计算的依赖提出了另一个关键优势。
摘要:聚乙烯二氟(PVDF)扩展的石墨(EXGR)纳米复合材料已通过溶液混合和熔融加工方法制备。在存在聚乙烯基吡喃酮(PVP)的情况下,石墨纳米片(GNSS)在PVDF矩阵中的分散体增强,如田间发射扫描电子显微镜分析所暗示的,导致非常低的电溶解率(0.3 wt%EXGR)。X射线衍射,傅立叶变换红外光谱和差异扫描Calorim-etry(DSC)分析证实了电活性伽玛和非极性α相的共存。与GNSS周围的PVP链包裹可降低PVDF-EXGR纳米复合材料中的结晶度,而DSC分析证明,与整洁的PVDF膜相比。热重分析证实,PVDF-EXGR纳米复合材料在500°C以上的热稳定性增强,主要归因于PVP辅助的GNSS分散体。与整洁的PVDF膜相比,溶液混合PVDF-EXGR纳米复合膜的水接触角在有或没有PVP的情况下增加。与溶剂铸膜相比,压缩式PVDF-EXGR纳米复合材料还表现出PVDF的电活性伽玛和非极性α阶段,其电导率的降低。
摘要 — 太阳能电池板和风力涡轮机等分布式能源 (DER) 的采用正在将传统能源网转变为更加分散的系统,其中微电网正成为一个关键概念。微电网中的点对点 (P2P) 能源共享通过允许交换剩余能源和更好地管理能源资源,提高了整个系统的效率和灵活性。这项工作分析了 P2P 能源共享对三种情况的影响 - 微电网内部、与相邻微电网以及所有微电网在配电系统中组合在一起。与可再生能源集成的标准 IEEE 123 节点测试馈线被划分为微电网。对于微电网之间的 P2P 能源共享,结果显示成本显著降低、对电网的能源依赖减少以及系统弹性显著提高。我们还预测了微电网的能源需求,以评估微电网控制和运行的能源弹性。总体而言,该分析为 P2P 能源共享微电网的性能和可持续性提供了宝贵的见解。索引术语 — 联盟博弈论、复杂网络、能源弹性微电网、净计量、点对点能源共享、渗透阈值、可再生能源、使用时间价格、可视性图表。
化学计量体积LUH 2是一种顺磁金属,具有与简单金属相当的高电导率。在这里我们表明,通过磨削过程(即,由商业购买的LuH 2粉末制成的CP颗粒)在粒度或表面条件下修改晶粒尺寸或表面条件的敏感性变化,其较高金属粉仍然是金属的,但仍表现出数千倍的电阻性,而较高的电阻率则越来越多,而较高的电阻却增强了较高的势力,而又一次的势力又增强了空中的增强性,并且又增强了空中的增强性。对于这些CP样品,有趣的是,我们有时可以在高温下观察到突然的电阻率下降,这也显示出对磁场和电流的依赖。可变温度XRD,磁敏感性和比热的测量不包括观察到的电阻率下降的结构,磁性和超导转换的可能性。相反,由于氢化计量学的修饰或氧气/氮的污染,我们暂时将上述观察结果归因于晶体表面上的绝缘层的存在。金属晶粒通过绝缘表面的渗透可以解释电阻率的突然下降。因此,目前的结果要求谨慎地认为电阻率下降是超导性的,并使背景减法无效分析电阻率数据。
I。在超短路通道CMOS节点中,TDDB仍然是关键的可靠性问题,并保证了速度性能和低消耗要求。即使状态应力通常以比州立应力较小的速率降解设备,在毫米波域中RF操作下HBD的限制因素也可能成为毫米波域(5G)[1-3]的限制因素,其中通常相对于用于逻辑应用的电源电压V DD通常可以增加一倍。因此,一旦生成了局部缺陷的临界密度,设备参数漂移可能与软崩溃的相关性显着,可能会触发硬性崩溃到栅极驱动器区域。许多论文从口气压力期间的界面损伤的横向分析中讨论了峰值降解发生在闸门边缘之外。崩溃点发生在间隔区域,并与峰界面损伤相处[4-5]。尽管发现了BD后的离子分解机制,排水管和闸门泄漏电流已达成合理的共识,但发现在排水边缘[6-8]中产生了介电堆栈中的渗透路径。
添加剂是根据声称其使用将改善现场污水处理系统的性能或美学的商业产品。这些产品通常称为“化粪池添加剂”,可以通过包括零售货架,邮购和门到门销售在内的各种营销路线为消费者使用。客户根据广告手册,产品标签和与电话营销商,抽水机和当地卫生机构的人员提供的信息做出决定购买添加剂。广告经常说明添加剂抵消漂白剂和洗涤剂的效果,增加土壤渗透,清除管道沉积或减少气味。在以下讨论中描述的法定要求仅与声称影响华盛顿州化粪池系统性能或美学的产品有关。常见的家用产品,例如洗涤剂,漂白剂,排水清洁剂和厕所除臭剂块,专门从该法规中排除在外。通过其索赔确定添加剂。例如,两种旨在悬挂在马桶中的产品可能具有相同的外观和气味。第一个是旨在使房间新鲜的除臭剂块,第二个是剂量的芬芳物质,每种潮红旨在改善治疗并保持线条清晰。只有第二个产品符合现场污水添加剂的定义。
石墨烯及其衍生物表现出有趣的特性(机械性能,电导和热导电性)。将其纳入聚合物矩阵时,在Elec Tronics,Medicine,Transportation等领域中可能进行了许多应用。本综述的目的是突出石墨烯如何影响聚合物纳米复合材料的电性能。第一部分解释了石墨烯的特殊结构,石墨烯是合成石墨烯的主要方法以及对电导率的影响。在第一部分中,还解释了石墨烯血小板的方向和比对如何影响单相聚合物纳米复合材料的渗透阈值或电导率。最后,在第一部分中,我们通过对石墨烯上的化学处理来提高对电性能增强的一些概括。本综述的第二部分的目的是显示将石墨烯掺入不混溶的聚合物对微结构和电气性能的影响。,我们专注于选择性定位纳米颗粒的概念:如何预测石墨烯的定位以及如何通过化学和动力学因素来量身定制定位。根据73个出版物的数据绘制了几个图,以表现出基于石墨烯的聚合物混合纳米复合材料的不同参数对电导率(S.cm -1)的影响。最后,本综述的最后一部分专门用于基于石墨烯的聚合物混合纳米复合材料的电气应用。
