马萨诸塞州波士顿,2023 年 8 月 28 日——Superluminal Medicines Inc. 是一家生成生物学和化学公司,致力于开发差异化产品线并彻底改变药物生产的速度和准确性,该公司今天宣布完成一轮 3300 万美元的融资。该投资由 RA Capital Management 牵头,Insight Partners 和 NVIDIA 也参与其中。Gaingels 也参与了融资。这笔资金将用于推进 Superluminal 的小分子药物发现项目,该项目最初专注于高价值的 G 蛋白偶联受体 (GPCR) 靶点。该公司的产品线源于其平台,该平台利用人类理解、生成生物学和化学、机器学习和专有大数据基础设施的独特组合,在短短几个月内创造出具有差异化 TPP 的候选化合物。Superluminal Medicines 首席执行官 Cony D'Cruz 表示:“我们很感激得到知名投资者的支持,因为我们对药物发现和开发的速度、准确性和成本效益有了新的期望。” “我们对生物学的深刻理解以及我们运用必要技术和工具有效探索和操纵生物学的能力是关键的差异化因素,我们相信这最终将使我们能够开发出治疗药物。” “Superluminal 从预测到结构验证再到首次生物学成功的速度是前所未有的,”RA Capital Management 合伙人兼董事总经理医学博士 Andrew Levin 说道。“Superluminal 在结合生物学、化学和技术方面的独创性具有巨大潜力,可以加速药物发现并提高小分子药物开发的成功率。我们很高兴能够支持 Superluminal 团队推进其差异化方法以选择先导项目候选人。” GPCR 是一大家族整合膜蛋白,是细胞信号传导的关键调节器。在 850 种 GPCR 中,70% 未使用药物,只有 138 种具有实验性活性状态的蛋白质结构。 “决定专注于 GPCR 是我们想研究天然状态的蛋白质的愿望。 “我们的方法使我们能够以动态的方式研究蛋白质,探索蛋白质可以采用的多种构象,”D'Cruz 先生说。“通过理解和利用这些动态特性,我们可以在细胞和身体的自然环境中以积极的方式进行干预。”
版权所有 2002 和 2013 言语和语言障碍中心。保留所有权利。未经 CSLD 事先书面许可,不得以任何形式或任何方式复制本书的任何部分,但指定为“可复制”用于语言课程的页面除外。父母可以复制这些页面供自己的孩子使用,专业人员可以复制这些页面供其客户使用,但不得分发给专业人员或父母团体、学区、学校或诊所。言语和语言障碍中心 310-D South Main Street Lombard, IL 60148 (630) 652-0200 传真 (630) 652-0300 电子邮件:info@csld.org ISBN # 0-9637921-1-3 ___________________________________________________________________ 美国国会图书馆出版品目数据 包括索引。 1. 超忆症:干预策略与资源指南 2. 发育障碍 – 语言障碍 3. 自闭症:PDD _______________________________________________ 美国印刷 第二版
•Hanane Belhoul Fakir在博士学位的最后一年就剪切应力在引发动脉粥样硬化中的作用。她的独特观察表明,注入动脉介质的血液迅速转化为脂质,提供了长期怀疑但从未证明的证据,即瓦萨·瓦索拉(Vasa Vasora)破裂,动脉壁上的脆弱血管可能引发动脉粥样硬化。
能源群落通常被称为能源系统灵活性的潜在来源。但是,范围仍然不确定,并取决于目前的技术和市场结构。这项研究在不同的技术系统配置下对能源社区进行了对不同的电力税和电网关税方案的影响,以确定灵活性潜力和对周围能源系统的影响。发现,除非激励减少电网进口,否则进口能力是其他限制的,否则能源群落的电气将大大增加从周围电网中进口的电力,从而增加所需的电网能力。这在很大程度上可以通过重组税和关税计划来激励灵活性和更具时间分布的消费模式来消除这一问题。最值得注意的是,产能支付证明了这方面的有效措施。通常发现能源界的运作与未来国家100%可再生能源系统的运作非常吻合,这表明这种能源社区和周围国家能源系统的预期运作中没有固有的关键矛盾。
摘要。按需修改高迁移率二维 (2D) 材料的电子能带结构对于需要快速调整固态器件的电和光响应的各种应用具有重要意义。尽管已经提出了电可调超晶格 (SL) 势来设计石墨烯中狄拉克电子的能带结构,但设计可以与光混合的新兴准粒子激发的最终目标尚未实现。我们表明,单层石墨烯中一维 (1D) SL 势的极端调制会在费米面附近产生阶梯状电子能级,从而导致以子带间跃迁 (ISBT) 为主导的光学电导率。一个特定的、可通过实验实现的平台由位于 1D 周期性元栅极顶部的 hBN 封装石墨烯和第二个未图案化的栅极组成,可产生强烈调制的静电势。我们发现,具有大动量且垂直于调制方向的狄拉克电子通过静电势的全内反射进行波导,从而产生具有几乎等间距能级的平坦子带。表面等离子体与电控 ISBT 的预测超强耦合是产生可用光学探测的极化子准粒子的原因。我们的研究为探索具有栅极可调电子能带结构的二维材料中的极化子开辟了一条途径。
图S14。具有周期性边界条件(PBC)的拟定计算域。(a)顶视图和(b)由𝜃 twist的顶部MOS 2层,中间摩西2层和底部AU基板组成的异质结构系统的前视图。(c)表示内部键的表示,该键证明了双层系统中所构建的Moiré模式。moiré单位单元在(a)中以白色标记,在(c)中为红色。请注意,高𝜃双层构型导致小尺寸的Moiré周期性,𝐷。
从1995年的第一个单一组合CDSE超级晶格开始(图2a),并以1999年的多层Sio 2超级晶格的发现达到顶点(图2B),无机纳米晶体超级晶格的多样性是通过使用良好的良好的良好的良好的方法,可欣赏使用的方法。[13–17]这些具有原子精度的上层建筑继续激励对新型超级晶格的研究。发现CDSE超晶格几乎十年后,多功能超晶格的发展受到平衡纳米级相互作用的困难,例如范德华力,例如范德华力,静电效应,空间排斥力,摩尔的骨骼二波尔相互作用以及氢键。[18]在2002年,Fe 2 O 3纳米晶体和PBSE量子点自组装成具有未经原始的高包装密度的高度有序的3D二元纳米晶体超晶格(图2C)。[15]从那时起,已经利用了15种超过15种类型的二元纳米晶体超级晶格,涵盖了广泛的材料,包括分号,金属和磁性构建块(图2E)。[16]此外,深入的研究证明,二元纳米晶体超级晶格的化学计量法主要由对稳定的纳米晶体的电荷指示,其熵,范德华瓦尔斯,固定剂,固定力和二极管力的贡献较小。在2003年,提出了包装模型来解释超晶格的结构构型并预测可能的布置(图2D)。[19]
2020 年 11 月,加拿大隐私专员提议为决策主体创建 GDPR 启发的权利,并允许对违反这些权利的行为进行经济处罚。此后不久,为算法决策创建解释权的提议被纳入 C-11 法案《数字宪章实施法》。该评论提出,为运营商创建正确选择和监督人工智能代理的职责将是一种补充性的、可能比创建解释权更有效的问责机制。这些职责将是雇主正确选择和留住人类雇员职责的自然延伸。允许受害者根据疏忽雇用或监督人工智能系统作为代理的理论获得赔偿,将反映出他们日益增强的(但不是完全的)自主权,并避免受害者在证明其他责任理论的可预见性要素时面临的一些挑战。
图2:(a)摩擦行为的系数显示MOS 2 -TI 3 C 2 t X固体润滑剂涂层在各种接触载荷下以0.1 m/s的单向滑动,作为干氮的滑动距离的函数。(b)稳态摩擦值与钢对钢,MOS 2-steel和ti 3 C 2 t x X-On-Steel引用并置。(c)在环境条件下在20 N和0.1 m/s下测量的摩擦系数与在干燥的氮条件下的摩擦相反,显示了湿度对摩擦学性能的影响。(d)钢基材上的涂料磨损是在相同距离滑动后正常负载的函数。摩擦被观察到随着正常载荷(接触压力)的增加而减小的,20 N测试条件超过了超级润滑性阈值的数量级(0.0034)。磨损率随着摩擦等负载的增加而降低。
寻找一个将广义相对论和量子理论融为一体的理论框架已被证明是物理学中最困难的任务之一。这一追求背后的一个普遍假设是引力本身必须具有量子性质。事实上,有人从多个角度反对以量子方式处理物质场而以经典方式处理引力的方案 [1, 2]。然而,这些论点被发现没有预想的那么令人信服(例如,参见 [3, 4, 5])。很明显,关于引力基本性质的最终裁决必须以量子理论和引力都发挥重要作用的情况下的实验证据为基础。标准预期是,这种情况只会出现在涉及极高能量的现象中,或者当曲率值接近普朗克尺度(即 R ∼ 1 /m 2 p)时——这两种情况目前都远远超出了我们的经验范围。然而,最近有提案在桌面实验中寻找引力的可能量子行为,[6, 7]。与此同时,也有提案提出,通过探索涉及与需要量子力学处理的状态下的物质源相关的引力场的思想实验,可能会获得有用的提示,[8, 9]。后一种方法的具体实例已在 [10, 11, 12] 中进行了详细探讨。所考虑的思想实验涉及两个观察者:一个控制放置在两个空间位置的量子叠加中的粒子,另一个决定是否允许第二个粒子对其与第一个粒子的(电磁或引力)相互作用作出反应。这种设置使得粒子之间的相互作用似乎会阻止