抽象的分层混合植物(LPK)作为光伏细胞,LED和激光器的稳定性提高,有望作为光伏细胞,LED和激光的3D金属卤化物钙钛矿的替代品或添加剂。然而,这些材料中的高激子结合能意味着激子是许多设备运行条件下的大多数物种。尽管结合LPK的设备的效率一直在增加,但对于这些材料中的激子和自由电荷载体的相互作用仍然未知,这对于理解光电特性如何决定设备的效率是至关重要的信息。在这项工作中,我们采用光泵 / THZ探针光谱(OPTP)和可见的瞬态吸收光谱(TAS)来分析苯基甲基铵铅碘化物(PEA)2 PBI 4的光扣性特性和电荷载体动力学。通过结合这些技术,我们能够从激发子和自由电荷载体中解散贡献。我们观察到在约400 fs的时间尺度上快速冷却自由电荷载体和激子形成,然后在速率常数k 2〜10 9 cm 3 s-1的时间尺度上进行较慢的双分子重组。激子通过两个单分子过程重组,其寿命为t 1〜11 ps和t 2〜83 ps。此外,我们检测出激子的特征 - 瞬态吸收动力学痕迹中的声子耦合。这些发现提供了有关自由电荷接入器和激子之间相互作用的新见解,以及可能进一步了解LPK中的电荷运营商动力学的可能机制。
金属卤化物钙钛矿 (MHP) 是一种具有优异性能的半导体材料,广泛应用于各个行业。这些材料通常表现出直接跃迁半导体行为,其特点是吸收系数高、激子结合能低,从而具有出色的 PV 性能。此外,MHP 显示出高效的载流子传输速率、较长的载流子寿命和显著的扩散长度,从而能够以最少的复合实现电子和空穴的有效传输。1 利用 MHP 作为吸收层的钙钛矿太阳能电池 (PSC) 已成为第三代太阳能电池的典范。2009 年,Miyasaka 等人实现了 PSC 开发的一个重要里程碑。用钙钛矿取代染料敏化太阳能电池中的吸收材料,使光伏转换效率 (PCE) 达到 3.8%。2 从那时起,PSC 引起了广泛关注,其 PCE 经历了快速增长,如图所示。1(A)。3 – 9 目前,单结 PSC 已实现认证 PCE 26.14%,10 稳步接近 Shockley – Queisser 效率极限 33.7%。11
1。Stolterfoht M,Grischek M,Caprioglio P等。如何量化整洁的钙钛矿膜的效率潜力:隐含效率超过28%的钙钛矿半核对象。ADV MATER。2020; 32(17):2000080。 doi:10.1002/adma.202000080 2。Hages CJ,Redinger A,Levcenko S等。在非理想的半导体中识别实际的少数族载体寿命:Kesterite材料的案例研究。adv Energy Mater。2017; 7(18):1700167。 doi:10.1002/aenm。 2017001673。DeMello JC,Wittmann HF,朋友RH。 改进了外部光致发光量子效率的实验确定。 ADV MATER。 1997; 9(3):230-232。 doi:10.1002/adma.19970090308 4。 Katahara JK,Hillhouse HW。 QUASI-FERMI水平分裂和半导体光致发光的子带隙吸收性。 J Appl Phys。 2014; 116(17):173504。 doi:10.1063/1.4898346 5。 Braly IL,Dequilettes DW,LM等人的Pazos-Out。 杂种钙钛矿膜接近辐射极限,其光量超过90% - 孔量子效率。 nat光子学。 2018; 12(6):355-361。 doi:10。 1038/s41566-018-0154-Z 6。 Frohna K,Anaya M,Macpherson S等。 纳米级化学杂化基因占主导地位的钙钛矿太阳能电池的光电子反应。 纳米技术。 2022; 17(2):190-196。 doi:10.1038/ s41565-021-01019-7 7。 div> wurfelP。辐射的化学潜力。 J Phys C:固态物理。 rau U. Phys Rev b。2017; 7(18):1700167。 doi:10.1002/aenm。2017001673。DeMello JC,Wittmann HF,朋友RH。改进了外部光致发光量子效率的实验确定。ADV MATER。1997; 9(3):230-232。 doi:10.1002/adma.19970090308 4。 Katahara JK,Hillhouse HW。 QUASI-FERMI水平分裂和半导体光致发光的子带隙吸收性。 J Appl Phys。 2014; 116(17):173504。 doi:10.1063/1.4898346 5。 Braly IL,Dequilettes DW,LM等人的Pazos-Out。 杂种钙钛矿膜接近辐射极限,其光量超过90% - 孔量子效率。 nat光子学。 2018; 12(6):355-361。 doi:10。 1038/s41566-018-0154-Z 6。 Frohna K,Anaya M,Macpherson S等。 纳米级化学杂化基因占主导地位的钙钛矿太阳能电池的光电子反应。 纳米技术。 2022; 17(2):190-196。 doi:10.1038/ s41565-021-01019-7 7。 div> wurfelP。辐射的化学潜力。 J Phys C:固态物理。 rau U. Phys Rev b。1997; 9(3):230-232。 doi:10.1002/adma.19970090308 4。Katahara JK,Hillhouse HW。 QUASI-FERMI水平分裂和半导体光致发光的子带隙吸收性。 J Appl Phys。 2014; 116(17):173504。 doi:10.1063/1.4898346 5。 Braly IL,Dequilettes DW,LM等人的Pazos-Out。 杂种钙钛矿膜接近辐射极限,其光量超过90% - 孔量子效率。 nat光子学。 2018; 12(6):355-361。 doi:10。 1038/s41566-018-0154-Z 6。 Frohna K,Anaya M,Macpherson S等。 纳米级化学杂化基因占主导地位的钙钛矿太阳能电池的光电子反应。 纳米技术。 2022; 17(2):190-196。 doi:10.1038/ s41565-021-01019-7 7。 div> wurfelP。辐射的化学潜力。 J Phys C:固态物理。 rau U. Phys Rev b。Katahara JK,Hillhouse HW。QUASI-FERMI水平分裂和半导体光致发光的子带隙吸收性。J Appl Phys。2014; 116(17):173504。 doi:10.1063/1.4898346 5。Braly IL,Dequilettes DW,LM等人的Pazos-Out。杂种钙钛矿膜接近辐射极限,其光量超过90% - 孔量子效率。nat光子学。2018; 12(6):355-361。 doi:10。 1038/s41566-018-0154-Z 6。 Frohna K,Anaya M,Macpherson S等。 纳米级化学杂化基因占主导地位的钙钛矿太阳能电池的光电子反应。 纳米技术。 2022; 17(2):190-196。 doi:10.1038/ s41565-021-01019-7 7。 div> wurfelP。辐射的化学潜力。 J Phys C:固态物理。 rau U. Phys Rev b。2018; 12(6):355-361。 doi:10。1038/s41566-018-0154-Z 6。Frohna K,Anaya M,Macpherson S等。纳米级化学杂化基因占主导地位的钙钛矿太阳能电池的光电子反应。纳米技术。2022; 17(2):190-196。 doi:10.1038/ s41565-021-01019-7 7。 div>wurfelP。辐射的化学潜力。J Phys C:固态物理。rau U.Phys Rev b。1982; 15(18):3967-3985。 doi:10.1088/0022-3719/15/18/012 8。 光伏量子效率与太阳能电池的电发光发射之间的相互关系。 2007; 76(8):085303。 doi:10.1103/physrevb.76.085303 9。 Caprioglio P,Wolff CM,Sandberg OJ等。 关于钙钛矿太阳能电池中理想因子的起源。 adv Energy Mater。 2020; 10(27):2000502。doi:10.1002/aenm.202000202 10。 Sarritzu V,Sestu N,Marongiu D等。 混合钙钛矿中冲击式读取厅和界面重组电流的光学测定。 SCI代表。 2017; 7(1):44629。 doi:10.1038/srep44629 11。 Richter JM,Abdi-Jalebi M,Sadhanala A等。 通过光子回收和光外耦合增强卤化物钙壶岩中的光含量产量。 nat Commun。 2016; 7(1):13941。 doi:10.1038/ ncomms13941 12。 div> Staub F,Kirchartz T,Bittkau K,Rau U.通过修饰光偶联的修饰,在铅卤化物钙钛矿膜中操纵净辐射重组率。 J Phys Chem Lett。 2017; 8(20):5084-5090。 doi:10。 1021/acs.jpclett.7b02224 13。 Davies CL,Filip MR,Patel JB等。 双分子重组三碘化物钙钛矿是一个反吸收过程。 nat Commun。 2018; 9(1):293。 doi:10.1038/s41467-017- 02670-21982; 15(18):3967-3985。 doi:10.1088/0022-3719/15/18/012 8。光伏量子效率与太阳能电池的电发光发射之间的相互关系。2007; 76(8):085303。 doi:10.1103/physrevb.76.085303 9。 Caprioglio P,Wolff CM,Sandberg OJ等。 关于钙钛矿太阳能电池中理想因子的起源。 adv Energy Mater。 2020; 10(27):2000502。doi:10.1002/aenm.202000202 10。 Sarritzu V,Sestu N,Marongiu D等。 混合钙钛矿中冲击式读取厅和界面重组电流的光学测定。 SCI代表。 2017; 7(1):44629。 doi:10.1038/srep44629 11。 Richter JM,Abdi-Jalebi M,Sadhanala A等。 通过光子回收和光外耦合增强卤化物钙壶岩中的光含量产量。 nat Commun。 2016; 7(1):13941。 doi:10.1038/ ncomms13941 12。 div> Staub F,Kirchartz T,Bittkau K,Rau U.通过修饰光偶联的修饰,在铅卤化物钙钛矿膜中操纵净辐射重组率。 J Phys Chem Lett。 2017; 8(20):5084-5090。 doi:10。 1021/acs.jpclett.7b02224 13。 Davies CL,Filip MR,Patel JB等。 双分子重组三碘化物钙钛矿是一个反吸收过程。 nat Commun。 2018; 9(1):293。 doi:10.1038/s41467-017- 02670-22007; 76(8):085303。 doi:10.1103/physrevb.76.085303 9。Caprioglio P,Wolff CM,Sandberg OJ等。关于钙钛矿太阳能电池中理想因子的起源。adv Energy Mater。2020; 10(27):2000502。doi:10.1002/aenm.202000202 10。Sarritzu V,Sestu N,Marongiu D等。混合钙钛矿中冲击式读取厅和界面重组电流的光学测定。SCI代表。 2017; 7(1):44629。 doi:10.1038/srep44629 11。 Richter JM,Abdi-Jalebi M,Sadhanala A等。 通过光子回收和光外耦合增强卤化物钙壶岩中的光含量产量。 nat Commun。 2016; 7(1):13941。 doi:10.1038/ ncomms13941 12。 div> Staub F,Kirchartz T,Bittkau K,Rau U.通过修饰光偶联的修饰,在铅卤化物钙钛矿膜中操纵净辐射重组率。 J Phys Chem Lett。 2017; 8(20):5084-5090。 doi:10。 1021/acs.jpclett.7b02224 13。 Davies CL,Filip MR,Patel JB等。 双分子重组三碘化物钙钛矿是一个反吸收过程。 nat Commun。 2018; 9(1):293。 doi:10.1038/s41467-017- 02670-2SCI代表。2017; 7(1):44629。 doi:10.1038/srep44629 11。Richter JM,Abdi-Jalebi M,Sadhanala A等。通过光子回收和光外耦合增强卤化物钙壶岩中的光含量产量。nat Commun。2016; 7(1):13941。 doi:10.1038/ ncomms13941 12。 div> Staub F,Kirchartz T,Bittkau K,Rau U.通过修饰光偶联的修饰,在铅卤化物钙钛矿膜中操纵净辐射重组率。 J Phys Chem Lett。 2017; 8(20):5084-5090。 doi:10。 1021/acs.jpclett.7b02224 13。 Davies CL,Filip MR,Patel JB等。 双分子重组三碘化物钙钛矿是一个反吸收过程。 nat Commun。 2018; 9(1):293。 doi:10.1038/s41467-017- 02670-22016; 7(1):13941。 doi:10.1038/ ncomms13941 12。 div>Staub F,Kirchartz T,Bittkau K,Rau U.通过修饰光偶联的修饰,在铅卤化物钙钛矿膜中操纵净辐射重组率。J Phys Chem Lett。2017; 8(20):5084-5090。 doi:10。 1021/acs.jpclett.7b02224 13。 Davies CL,Filip MR,Patel JB等。 双分子重组三碘化物钙钛矿是一个反吸收过程。 nat Commun。 2018; 9(1):293。 doi:10.1038/s41467-017- 02670-22017; 8(20):5084-5090。 doi:10。1021/acs.jpclett.7b02224 13。Davies CL,Filip MR,Patel JB等。 双分子重组三碘化物钙钛矿是一个反吸收过程。 nat Commun。 2018; 9(1):293。 doi:10.1038/s41467-017- 02670-2Davies CL,Filip MR,Patel JB等。双分子重组三碘化物钙钛矿是一个反吸收过程。nat Commun。2018; 9(1):293。 doi:10.1038/s41467-017- 02670-22018; 9(1):293。 doi:10.1038/s41467-017- 02670-2
作为高清展示领域的后起之秀,研究人员因其宽色范围,1个高色纯度,2个柔性可调性3等,对研究人员进行了广泛研究。自2014年在室温下首次合成的第一颗毛线,因此骨的外部量子效率(EQE)在10年内从不到1%到20%以上。4–6最近,在电荷转运调制,相分布调控和光管理的多重影响下,绿色和红色毛发的均等量超过了25%,而蓝骨的最大eqe也逐渐通过合理设计和有效添加剂的合理设计和结合而逐渐超过18%。9,三种原色的有希望的平衡发展,以及与最先进的有机发光二极管(OLEDS)和量子点发光二极管(QLEDS)等效的工作效率,使得在宽色彩色显示屏和固体照明领域中区分了骨骼。但是,与EQE的快速发展相比,骨的操作稳定性显然落后。高
摘要:由于对气候变化、环境恶化和能源安全的担忧,氢气作为能源载体的潜力得到了广泛认可,但氢气的储存和运输仍然是重大挑战。具有钙钛矿晶体结构的氢化物可以在较小的体积内储存大量的氢气,并且相对容易产生氢气。其中,三元钙钛矿氢化物 NaMgH 3 具有相对较高的理论储氢密度和氢吸收和解吸的可逆性。在本研究中,采用密度泛函理论框架下的第一性原理计算,研究了用 K ? 取代 Na ? 的影响。对Na1–xKxMgH3(x0:75Þ)结构、电子和储氢性能的影响。结果表明,用K–取代Na–导致晶格参数略有下降、晶胞体积增加,MgH6八面体变得更加扭曲,这是主体材料不稳定的一个很好的指标,最终导致分解温度从560.1降低到489.6K,这有利于储氢应用。
(2t)2(ma)2 Pb 3 I 10(2t n = 3),(3t)2 PBI 4(3T n = 1),(3t)2(ma)Pb 2 I 7(3t n = 2)
手性2D钙钛矿作为圆形极化的光致发光材料引起了极大的关注,但是这些材料通常在环境条件下表现出较弱的CPL。几项研究表明,使用强的外部磁场或低温可以增强CPL的程度。在这里,我们报告了一种通过使用极高的高压来调整手性2D钙钛矿的圆两极化的光致发光的方法。(S-和R-MBA)2 PBI 4钙钛矿表现出良好的光学可调性,其压力在PL波长,强度和带隙方面。极化分辨的光致发光测量表明,在环境压力下,CPL的程度从近乎零增加到8.5 GPA时高达10%。adxrd和拉曼结果表明,在施加压力时,结构失真和增加的层间耦合是造成增强性手性的。我们的发现提供了一种调整CPL材料并显示下一代CPL设备中潜在应用的新方法。
要全面了解杂原子材料,既需要准确描述其短程结构,也需要了解促进或抑制特定短程有序的物理原理。这种机械理解对于技术相关材料尤其有价值,其中促进或抑制特定局部结构模式的有针对性的合成方案可能允许优化关键材料特性。虽然许多阴离子无序异阴离子材料的结构已被充分表征,但 1,2,19 – 22 阳离子无序异阳离子材料的研究较少。对于异阴离子材料,已经提出了各种通用设计规则来解释基于电子、应变或静电效应的部分或完全阴离子有序的具体例子。1,2,15,20 然而,对于杂阳离子材料,影响短程有序偏好的因素尚不十分清楚。23
要全面了解杂原子材料,既需要准确描述其短程结构,也需要了解促进或抑制特定短程有序的物理原理。这种机制理解对于技术相关材料尤其有价值,在这些材料中,促进或抑制特定局部结构模式的有针对性的合成方案可能允许优化关键材料特性。虽然许多阴离子无序杂阴离子材料的结构已被很好地表征,但阳离子无序杂阳离子材料的研究较少。对于杂阴离子材料,已经提出了各种通用设计规则来解释基于电子、应变或静电效应的部分或完全阴离子有序的具体例子。1,2,15,20然而,对于杂阳离子材料,指导短程有序偏好的因素尚不清楚。23