可重构设备提供了按需编程电子电路的能力。在这项工作中,我们展示了在后制造的钙钛矿 NdNiO 3 设备中按需创建人工神经元、突触和记忆电容器,这些设备可以通过单次电脉冲简单地重新配置为特定用途。钙钛矿镍酸盐的电子特性对氢离子局部分布的敏感性促成了这些结果。利用来自我们的记忆电容器的实验数据,储层计算框架的模拟结果显示出在数字识别和心电图心跳活动分类等任务中的出色性能。使用我们的可重构人工神经元和突触,模拟动态网络在增量学习场景中的表现优于静态网络。按需设计大脑启发计算机构建块的能力为自适应网络开辟了新的方向。C
在本研究中,通过用 1-十二硫醇 (DT) 改性钙钛矿薄膜表面,然后将预分散的 MoS 2 薄纳米片滴铸,获得了高效、耐弯曲的柔性钙钛矿太阳能电池。我们的结果表明,界面改性后柔性器件的效率有所提高,并表明 DT 和 MoS 2 改性器件在 300 次弯曲循环后完全恢复其初始 PCE 和 FF、电流密度和开路电压值,而标准器件的 PCE 仅为其 PCE 的 50%。按照未封装器件的标准光循环协议,结果显示标准器件的 PCE 明显下降至其最大值的 32%,而改性器件可恢复其最高 PCE 值的 95%。不同的表征方法表明表面改性方法会诱导疏水性并显着降低界面陷阱密度。
可重构设备提供了按需编程电子电路的能力。在这项工作中,我们展示了在后制造的钙钛矿 NdNiO 3 设备中按需创建人工神经元、突触和记忆电容器,这些设备可以通过单次电脉冲简单地重新配置为特定用途。钙钛矿镍酸盐的电子特性对氢离子局部分布的敏感性促成了这些结果。利用来自我们的记忆电容器的实验数据,储层计算框架的模拟结果显示出在数字识别和心电图心跳活动分类等任务中的出色性能。使用我们的可重构人工神经元和突触,模拟动态网络在增量学习场景中的表现优于静态网络。按需设计大脑启发计算机构建块的能力为自适应网络开辟了新的方向。C
Baba , A.、Bai , D.、Sadoh , T.、Kenjo , A.、Nakashima , H.、Mori , H. 和 Tsurushima , T. (1997)。硅晶体中辐射诱导缺陷和非晶化的行为。物理研究中的核仪器和方法。 B 部分:光束与材料和原子的相互作用,121(1 – 4),299 – 301。,Li,X.,Qi,J.,Yu,D.,Li,J.和Gao,P.(2018)。从原子尺度洞察甲基铵碘化铅钙钛矿的结构不稳定性及其分解途径。自然通讯, 9 (1), 4807。陈绍军, 张颖, 张鑫, 赵建, 赵哲, 苏鑫, 华哲, 张建, 曹建, 和冯建军 (2020)。有机-无机杂化钙钛矿通过中间超结构的一般分解途径及其抑制机制。先进材料, 32 (29), 2001107。Cortecchia, D., Lew, K. C., So, J.-K., Bruno, A., & Soci, C. (2017)。多维钙钛矿薄膜中自组织异质相的阴极发光。材料化学, 29 (23), 10088 – 10094。Dar, MI、Jacopin, G.、Hezam, M.、Arora, N.、Zakeeruddin, SM、Deveaud, B.、Nazeeruddin, MK 和 Grätzel, M. (2016)。 CH3NH3PbI3-xBr x 钙钛矿单晶中的不对称阴极发光发射。 ACS Photonics, 3 (6), 947 – 952。Divitini, G., Cacovich, S., Matteocci, F., Cinà, L., Di Carlo, A., & Ducati, C. (2016)。原位观察钙钛矿太阳能电池的热致降解。自然能量, 1 (2), 15012。http://dx.doi.org/10.1037/0021-843X.111.1.15012 Drouin, D., Couture, R., Joly, D., Tastet, X., Aimez, V., & Gauvin, R. (2007)。 CASINO V2.42 — 为扫描电子显微镜和微分析用户提供快速且易于使用的建模工具。扫描, 29 (3), 92 – 101。Ferrer Orri, J.;莱内曼,J.;普雷斯塔特,E.;约翰斯通,DN; Tappy,N.LightSpy。 2021. Giannuzzi, LA、Geurts, R. 和 Ringnalda, J. (2005)。 2 keV Ga + FIB 铣削可减少硅中的非晶损伤。显微镜和微分析,11(S02),828-829。离子偏析对混合卤化物钙钛矿薄膜局部光学特性的影响。纳米快报, 16 (2), 1485 – 1490。Hidalgo, J., Castro-Mendez, A., & Correa-Baena, J. (2019)。钙钛矿太阳能电池的成像和映射表征工具。先进能源材料, 9 (30), 1900444。Huh, Y., Hong, K. J., & Shin, K. S. (2013)。聚焦离子束铣削在金属和电子材料中引起的非晶化。显微镜和微分析,19 (S5),33 – 37。Jeangros, Q., Duchamp, M., Werner, J., Kruth, M., Dunin-Borkowski, RE, Niesen, B., Ballif, C., & Hessler-Wyser, A. (2016)。原位 TEM 分析
在太阳能电池的制造过程中限制了半导体中的有害缺陷或将其驱动的已成为太阳能电池社会1 - 4的最根本任务之一。 这种情况在金属卤化物钙钛矿太阳能电池社区中也普遍存在,后者见证了钙钛矿太阳能电池的功率转化效率(PCE)从3.8%的3.8%增加到25.5%,而在不知所措的情况下,在缺陷量允许疫苗策略上据报道了Prog-Ress。 许多报道的钙钛矿太阳能电池现在可以通过1,000 h的操作稳定性测试9,10。 对钙钛矿太阳能电池的效率或稳定性的任何进一步提高都必须依靠对钙钛矿缺陷性质的更深入的理解,以消除所有非辐射电荷重组路径,以消除或忽略它们。 在偏置或照明下太阳能电池的降解与缺陷进化11 - 14密切相关。 但是,在实验中确定钙钛矿中缺陷的化学性质仍然是一个挑战。 近年来已经对钙钛矿中的缺陷进行了深入的研究,但是关于化学性质,它们的分布和降解过程中的演变仍然没有达成共识。 几个计算给出了有争议的结果,即不同的缺陷,包括卤化物间隙(I I-和I i +),金属空位(V Pb)或抗磷酸盐(I MA) - 导致甲基铵三铅三碘化物(MAPBI 3)15-19-15-19。 但是,没有直接的实验方法来识别批量和表面上缺陷的化学性质已成为太阳能电池社会1 - 4的最根本任务之一。这种情况在金属卤化物钙钛矿太阳能电池社区中也普遍存在,后者见证了钙钛矿太阳能电池的功率转化效率(PCE)从3.8%的3.8%增加到25.5%,而在不知所措的情况下,在缺陷量允许疫苗策略上据报道了Prog-Ress。许多报道的钙钛矿太阳能电池现在可以通过1,000 h的操作稳定性测试9,10。对钙钛矿太阳能电池的效率或稳定性的任何进一步提高都必须依靠对钙钛矿缺陷性质的更深入的理解,以消除所有非辐射电荷重组路径,以消除或忽略它们。在偏置或照明下太阳能电池的降解与缺陷进化11 - 14密切相关。但是,在实验中确定钙钛矿中缺陷的化学性质仍然是一个挑战。近年来已经对钙钛矿中的缺陷进行了深入的研究,但是关于化学性质,它们的分布和降解过程中的演变仍然没有达成共识。几个计算给出了有争议的结果,即不同的缺陷,包括卤化物间隙(I I-和I i +),金属空位(V Pb)或抗磷酸盐(I MA) - 导致甲基铵三铅三碘化物(MAPBI 3)15-19-15-19。但是,没有直接的实验方法来识别批量和表面上缺陷的化学性质最近的实验试图鉴定钙壶中缺陷的化学性质,暗示了对MAPBI 3中深层跨度跨性光谱典型表征20; MAPBI 3中深层陷阱的带负电荷的碘化物间质(I-I-),MA空位(V MA-)和MA间隙(MA I +)的可能起源。 i i-作为甲氨基三碘铅(FAPBI 3)中的主要浅阴离子缺陷,具有正电子歼灭光谱测量结果21或fa i antisite作为Fama Perovskite 22的主要表面深陷阱缺陷。
随着有机-无机杂化钙钛矿的技术应用范围不断扩大,从光伏太阳能电池到发光器件,再到纳米级晶体管,确定微结构在决定载流子动力学如何影响器件效率方面的作用至关重要。本文,我们报告了杂化钙钛矿在成核和生长动力学的各个阶段的电荷载流子的超快动力学。溶液加工制造技术,其旋涂条件经过优化以控制中间相的成核密度,在温度梯度退火后转化为杂化钙钛矿。该策略将最终形成大晶粒薄膜的成核和生长步骤解耦,使我们能够探测电子和载流子动力学的差异。令人惊讶的是,我们发现成核微晶已经显示出杂化钙钛矿的电子特性,并且与大晶粒杂化钙钛矿薄膜具有相似的飞秒到纳秒动力学。
钙钛矿太阳能电池 (PSC) 因其高功率转换效率 (PCE) 和低制造成本而备受关注。人们采用了不同的方法来提高 PSC 的 PCE 和稳定性,例如成分工程 [1,2]、载流子传输层改性 [3] 和异质结构 [4]。最近,具有新颖结构的碳基单片钙钛矿太阳能电池 (mPSC) 已经成为以合理成本商业化大面积钙钛矿太阳能电池 (PSC) 最有前途的设计之一。此外,碳基设计无需使用 Spiro-OMeTAD 等空穴传输材料 (HTM)。由于制造成本也较低,因此可以开发出低成本的光伏系统。为了进一步提高性能,采用了加法工程方法。 mPSC 由四层连续层组成,如图 S1(支持信息)所示,包括玻璃/FTO/致密-TiO 2 /介孔-TiO 2 /介孔-ZrO 2 /碳。这些 mPSC 中填充有钙钛矿,从而分别充当吸光层。在这种设计中,钙钛矿同时充当空穴传输层 (HTL) 和吸收层 [5] 。为了提高 mPSC 的性能,人们探索了不同的技术,包括反溶剂优化 [6] 、后处理 [7] 和添加剂工程 [8] 。从上面提到的方法来看,添加剂工程非常有前景且易于使用,并且在众多
密度泛函理论计算用于预测 Cd 基混合有机-无机高 TC 铁电钙钛矿的电子结构,TMCM-CdCl 3 是其中一种代表。我们报告了这些非磁性化合物价带中的 Rashba-Dresselhaus 自旋分裂。有趣的是,我们在计算中发现分裂不一定对材料的极化敏感,而是对有机分子本身敏感,这为通过分子的选择实现其化学可调性开辟了道路。通过在 CdCl 3 链中替换 Cl,可以进一步实现自旋分裂的化学可调性,因为发现价带源自 Cl-Cl 周键合轨道。例如,在 TMCM-CdCl 3 中用 Br 替换 Cl 导致自旋分裂增加十倍。此外,这些材料中的自旋极化产生了与极化方向耦合的持久自旋纹理,因此可以通过电场进行控制。这对于自旋电子学应用来说很有前景。
本文报道了钙钛矿太阳能电池的数值模型,该电池与分布式布拉格反射器对相结合以获得高能量效率。提出的电池的几何形状用三种不同的钙钛矿材料模拟,包括 CH 3 NH 3 PbI 3 、 CH 3 NH 3 PbBr 3 和 CH 3 NH 3 SnI 3 。与无毒钙钛矿材料相比,基于碘化铅和溴化铅的有毒钙钛矿材料似乎更有效。具有最高效率结构执行的模拟光伏参数为开路电压 = 1.409 (V)、短路电流密度 = 24.09 mA/cm 2 、填充因子 = 86.18% 和效率 = 24.38%。此外,对当前研究与不同类型结构进行了比较,令人惊讶的是,我们的新几何形状具有增强的性能参数,这些参数以背反射器对(Si/SiO 2 )为特征。应用的数值方法和所呈现的几何设计努力有利于获得有可能解决效率较低的薄膜太阳能电池问题的结果。
Linh 等人 35 发现用离子半径较大的碱金属(M = Li、Na 和 K)取代(Bi 0.5 M 0.5 )TiO 3 会增加其直接带隙。将 MCaF 3(M = K、Cs)中的 K 位取代为 Cs 位,可将带隙从间接变为直接,从而改善光学特性。36 Gillani 等人还报道将碱土金属(Mg、Ca、Ba)掺杂到 SrZrO 3 中可使带隙从间接变为直接。37,38 此外,利用静水压力将带隙从间接变为直接被证明是有益的,就像在许多立方钙钛矿中所看到的那样。 39 – 44 通过施加外部压力,卤化物立方钙钛矿 CsBX 3 (B ¼ Sn, Ge; X ¼ Cl, Br) 的带隙减小到零,从而导致半导体到金属的转变。45 – 49 在静水压力下,还对 Ca 基立方碱金属卤化物钙钛矿 KCaX 3 (X ¼ F, Cl) 50,51 和 ACaF 3 (A ¼ Rb, Cs) 进行了第一性原理研究。52,53