消毒被认为是控制病毒在水中传播的关键步骤。氧化剂是有效的病毒消毒剂。然而,缺乏氧化剂对病毒失活的相对效率的结论性研究,而实际水样品中的消毒性能尚不完全清楚。在这项研究中,评估了臭氧(O 3),过氧化氢(H 2 O 2)和过氧基硫硫酸盐(PMS)的消毒作用,以不同剂量和接触时间的不同剂量和接触时间。结果表明,O 3以最短的接触时间为较低剂量的MS2 Coliphage灭活。为了实现MS2 coliphage的4-log消毒,所需的氧化剂剂量被排名为O 3 此外,全面比较了去离子水和次级e uent中三种氧化剂的消毒性能。 所有三种氧化剂均达到了MS2 Coliphage的4型灭活。 激发 - 发射矩阵(EEM)的结果表明,所有三种氧化剂均同步去除溶解有机物,并且O 3氧化了溶解的有机物,同时保持了消毒效率。 总结一下,O 3是这三种氧化剂中MS2 Coliphage消毒的最佳选择。 结果丰富了水中病毒消毒的研究,并为进一步研究工业实践中氧化剂的剂量提供了理论基础。此外,全面比较了去离子水和次级e uent中三种氧化剂的消毒性能。所有三种氧化剂均达到了MS2 Coliphage的4型灭活。激发 - 发射矩阵(EEM)的结果表明,所有三种氧化剂均同步去除溶解有机物,并且O 3氧化了溶解的有机物,同时保持了消毒效率。总结一下,O 3是这三种氧化剂中MS2 Coliphage消毒的最佳选择。结果丰富了水中病毒消毒的研究,并为进一步研究工业实践中氧化剂的剂量提供了理论基础。
空间动力学实验室正在为 SmallSats 开发一种原型“绿色”混合原型推进系统。该系统基于犹他州立大学专利的高性能绿色混合推进 (HPGHP) 技术。HPGHP 利用 3D 打印丙烯腈丁二烯苯乙烯 (ABS) 独特的介电击穿特性,允许重新启动、停止和重新点火。HPGHP 使用气态氧 (GOX) 作为氧化剂时工作最可靠,但当用高测试过氧化氢 (HTP) 代替时,会出现点火可靠性和延迟问题。这一缺陷是由于 HTP 的高分解能垒造成的。测试表明,氧化铝上的铂等贵金属催化剂可有效分解 90% 的单推进剂形式的 HTP,但分解释放的能量不足以可靠地点燃混合火箭。本研究报告了一种用于混合火箭的非催化热点火方法。使用气态氧预引线引发燃烧,一旦发生完全 GOX 点火,HTP 就会被引入热燃烧室。GOX/ABS 燃烧产生的残余能量会热分解 HTP 流,而游离氧可实现完全 HTP 混合燃烧。本文介绍了使用 90% HTP 和丙烯腈丁二烯苯乙烯 (ABS) 和聚甲基丙烯酸甲酯 (PMMA) 作为燃料的 0.5、1.0 和 5 N 推力水平的原型系统的设计选项和测试结果。
科学家使用了锌空气电池,其中还原氧气产生了H 2 O 2。“锌是一种丰富且历史悠久的元素……在印度非常便宜和丰富,”跨学科能源研究中心(ICER),固态和结构化学单元(SSCU)的教授Aninda J Bhattacharyya说。
单opellopellotant推进器是空间行业开发的最推进系统类型之一。该系统使用一种类型的推进剂,该推进剂在多孔培养基催化床上反应,以热气的形式产生推力。过去十年,绿色推进剂过氧化氢(H 2 O 2),也称为高测试过氧化氢(HTP),由于其低成本且易于储存为液体,被用作非常有毒且不环保的液态溶液。在当前的研究中,研究过氧化氢单op液推进器将在未来的卫星中进行应用。使用计算流体动力学(CFD)软件ANSYS Fluent进行数值模拟,以模拟推进器中过氧化氢的流体流动,并采用了有限体积方法来解决管理方程。物种传输模型使用涡流化学相互作用的涡流耗散模型(EDM)应用于单相反应模拟。基于局部热非平衡(LTNE)模型的数学方法用于描述通过包装床中的固体和流体阶段的传热,由相同的球形银颗粒组成。进行了几次模拟,可以最佳设计注射器,催化剂床的长度以及直径和喷嘴几何形状,以达到10N单op纤维素推进剂,其过氧化氢的浓度为87.5%。
摘要 - 最近的空间开发正在实施几种简单,更便宜的火箭技术。环境问题和政府限制后需要用绿色的推进剂来代替目前的(基于氢津)的有毒推进剂,而绩效的损失最少。过氧化氢是绿色推进剂未来的有前途的候选者,因为其柔韧性和良性性质可以提高简单,成本效益和环保的推进,并具有足够的性能,以替代丝津或其他高性能的有毒螺旋桨。因此,该论文专门用于研究基于过氧化氢的推进剂,以用于未来的太空推进应用。这项工作的主要目的是研究绿色推进剂的燃烧性能。首先,我们讨论了使用NASA CEA代码研究了过氧化氢的使用,空间推进的特性和管理氢的特性和管理的各种组合和过氧化氢的组合物。主要目的是在不同的O/F比为2,4,6,8,10的燃烧温度和特定的脉冲值,以及20、25和30 bar的各种压力室值。为此,已经考虑了两种情况来研究液态甲烷的BI推进剂,并在不同的O/F比和室,喉咙和出口时获得了质量分数变化。分析已经考虑了BI推进剂的所有组成和燃烧产物的比较,以便在适当的O/F比和固定腔室压力下实现最佳效率。可以观察到,过氧化氢的浓度对燃烧性能和由于重量浓度而产生的化学成分作用具有显着影响。得出的结论是,过氧化氢对于研究活动的未来发展很有用。索引术语 - 绿色推进剂;过氧化氢;双胶质剂;液态甲烷;太空推进; CEA分析
摘要。- 目标:活性氧(ROS)是在细胞内产生的,并在生理条件下作为基础细胞过程中的第二个使者。尽管与氧化应激相关的高级ROS的有害作用已经很好地确定,但尚不清楚发育中的大脑如何对氧化还原变化反应。我们的目的是研究氧化还原改变如何影响神经发生及其基础的机制。材料和方法:我们在过氧化氢(H 2 O 2)孵育后研究了体内小胶质细胞极化和神经原质。在体内量化细胞内H 2 O 2水平,使用了一种转基因斑马鱼线,使用了ES超级和称为TG(ACTB2:HYPHY3)KA8。然后,对N9小胶质细胞,三维神经干细胞(NSC) - 乳腺癌共培养和条件培养基进行了研究,以理解氧化还原调节后神经创造的变化的基础机制。结果:在斑马鱼中,暴露于H 2 O 2的胚胎神经发生,在小胶质细胞中诱导M1极化,并触发了Wnt/β-catenin途径。n9小胶质细胞的实验表明,暴露于H 2 O 2导致小胶质细胞的M1极化,并且该极化是由Wnt/β-catenin途径介导的。氧化还原的小胶质细胞调节,干扰了共培养实验中NSC分化的小胶质细胞。NSC共培养
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。该版本的版权持有人于2021年9月11日发布。 https://doi.org/10.1101/2021.09.10.459878 doi:Biorxiv Preprint
摘要:本文使用98%过氧化氢作为氧化剂,介绍了土著混合火箭技术的发展。连续的步骤,该步骤从对过氧化氢的兴趣开始,并开发了高测试过氧化测试,最终允许在内部获得高达99.99%的浓度。98%浓度(质量)的过氧化氢被选为用于进一步的空间推进和太空运输发展的主力。在技术发展的近10年中,Lukasiewicz研究网络 - 航空研究所完成了数百种分量表的混合火箭电机和组件测试。在2017年,该研究所提出了世界上第一个车辆,该车辆已证明了98%过氧化氢的影响。这是由ILR-33琥珀色亚轨道火箭实现的,该火箭使用混合火箭推进为主要阶段。从那时起,已经执行了三个成功的车辆连续飞行,并计划对冯·卡曼线的旋转。描述了混合火箭技术的发展。显示了混合燃料技术的进步,包括测试燃料谷物。进行了理论研究和对航天器的混合推进系统的规模,已经进行了声音火箭和小型发射车,并讨论了计划的进一步发展。
线粒体是细胞内活性氧(ROS)产生的主要部位。ROS是重要的sig nalling分子,但产生过多会导致细胞损伤和功能障碍。因此,准确确定线粒体内产生ROS的何时,方式和地点至关重要。以前,ROS检测涉及各种化学探针和荧光蛋白。这些仅由于分子在线粒体基质中的积累而有局限性,或者需要为每个不同物种表达新蛋白质。我们报告动态H 2 O 2在所有线粒体子室内具有惊人空间分辨率的变化。我们将自标记蛋白的特定靶向与新型H 2 O 2-反应性探针相结合。该方法是宽范围且灵活的,具有相同的表达蛋白质可加载带有不同染料和传感器的蛋白质。它为其他化学物种(除了ROS之外的其他化学物种)提供了一个框架,其在线粒体内的DY NAMICS尚不清楚,而无需设计新蛋白质。
摘要:在与地表和地下水相关的条件下氧化有机污染物的痕量浓度,将空气扩散的阴极偶联到不锈钢钢质阴极中,将大气O 2转化为过氧化氢(H 2 O 2),然后将其激活为产生羟基自由基(hydroxylics)。通过将H 2 O 2的生成与其激活分开,并采用由不锈钢纤维组成的流通电极,可以有效地以克服O 2,H 2 O 2的质量转移限制和微量有机污染物的方式有效地操作这两个过程。单独控制这两个过程产生的灵活性使得避免了多余的H 2 O 2的积累以及H 2 O 2后发生的能量损失已被耗尽。在存在天然有机物的存在下发生的治疗疗效的降低大大低于通常在均质晚期氧化过程中观察到的治疗疗效。实验表明,静电排斥阻止了带负电的·OH清除剂干扰中性污染物的氧化。双电极系统的能源消耗低于针对小型饮用水处理系统的其他技术报告的值。这两个阴极的协调操作有可能为使用点饮用水点提供一种实用,廉价的方式。关键字:分散处理,零化学输入,序列氧气减少,选择性转化,库仑排斥■简介
