图1 AAV-MIR SOD1靶向星形胶质细胞的靶向神经肌肉功能。神经肌肉功能。(a)纵向实验的模式,指示分析时间点。(b)记录在三头肌中记录的诱发复合肌肉动作电位(CMAP)的幅度。请注意,在第45天至66天之间,未处理和AAV-MIR CTRL注射SOD1 G93A小鼠的CMAP振幅的迅速下降。从第73天开始,AAV-MIR SOD1处理组中的CMAP值进行了逐步拯救。(c)网格测试用于评估四肢的强度。请注意,从第86天开始,未处理和AAV-MIR CTRL注射的SOD1 G93A小鼠的分数显着下降。在AAV-MIR SOD1处理的小鼠中观察到肌肉强度的显着拯救。B和C的统计分析:双向ANOVA(X组时间)重复测量通过Bonferroni事后检验; *** p <.001。 (D)在Rotarod测试中测量电动机协调。 请注意,从第75天开始,ALS小鼠的性能逐渐丧失。 AAV-MIR SOD1从第117天开始引起电动机协调的晚期改进。 统计分析:与Newman的单向方差分析 - KEULS事后测试; * p <.05,** p <.01。 数据代表平均值±SEM。 n =每组12只小鼠B和C的统计分析:双向ANOVA(X组时间)重复测量通过Bonferroni事后检验; *** p <.001。(D)在Rotarod测试中测量电动机协调。请注意,从第75天开始,ALS小鼠的性能逐渐丧失。AAV-MIR SOD1从第117天开始引起电动机协调的晚期改进。统计分析:与Newman的单向方差分析 - KEULS事后测试; * p <.05,** p <.01。数据代表平均值±SEM。n =每组12只小鼠
2.0 2022 年 2 月 使用《国家感染预防和控制手册》 (NIPCM) 方法审查有关空气过氧化氢净化系统的现有科学证据。添加了新建议。
摘要:由于波函数需要多配置特性,双自由基系统的量子化学研究具有挑战性。在这项工作中,变分量子特征求解器 (VQE) 用于计算涉及双自由基物种的锂超氧化物二聚体重排在量子模拟器和设备上的能量分布。考虑到当前的量子设备只能处理有限数量的量子比特,我们提出了选择合适的活动空间来对需要许多量子比特的化学系统进行计算的指导原则。我们表明,使用量子模拟器执行的 VQE 可以重现所选活动空间的全配置相互作用 (Full CI) 获得的结果。但是,对于量子设备上的计算,结果与精确值的偏差约为 39 mHa。利用读出缓解方法可以将该偏差改善至约 4 mHa,利用状态断层扫描技术净化计算出的量子态,可以进一步改善至 2 mHa,接近化学精度。
COVID-19 疫情导致医护人员个人防护装备 (PPE) 普遍短缺,包括 N95 口罩(过滤式面罩呼吸器;FFR)。这些口罩仅供一次性使用,但其灭菌并随后重复使用有可能大大缓解短缺问题。在这里,我们研究了使用 SteraMist 设备(TOMI;马里兰州弗雷德里克)在密封环境室中产生的离子化过氧化氢 (iHP) 对 PPE 进行灭菌。使用生物指示剂组件中的细菌孢子评估 iHP 灭菌的效果。经过一次或多次 iHP 处理后,对来自三家制造商的五种型号的 N95 口罩的功能保留情况进行了评估,评估依据是它们形成气密密封(使用定量适合性测试测量)和过滤气溶胶颗粒的能力。过滤测试在大学实验室和国家职业安全与健康研究所 (NIOSH) 预认证实验室进行。数据表明,使用 SteraMist iHP 技术灭菌的 N95 口罩可保持过滤效率达 10 次,这是迄今为止测试的最大次数。典型的 iHP 环境室体积约为 80 立方米,可处理约 7000 个口罩和其他物品(例如其他 PPE、iPAD),这对于繁忙的医疗中心来说是一种有效的方法。
抽象的超氧阴离子(O 2• - )是有害的活性氧(ROS)。跨性金属离子复合物通常被用作消除ROS的抗氧化剂。在这项工作中,首先通过氢键与聚乙烯基醇结合了大豆蛋白分离株(SPI),是一种可生物降解的蔬菜蛋白,以合成基于SPI的聚合物微凝胶(SPI-PMG)载体。此外,通过结合4-羟基水杨酸氨基酸Schiff-bas bas bas Metal Metal Complacees(Hosalcysm,M = Cu,Zn),制备了一种新型水溶性的生物聚合物/金属复合物(SCM@SPI-PMG)。SPI-PMG的结构,形态和稳定性的特征是傅立叶变换红外光谱,扫描电子显微镜,X射线衍射模式和热量分析。结果表明,获得的SPMG的直径范围为150至400 nm。此外,通过氮气四唑轻还原测定法确定了生物聚合物 - 金属配合物的清除超氧化阴离子自由基活性。与载体SPI-PMG相比,SCM@SPI-PMG的清除活动得到了极大的改进。值得注意的是,SCCU@SPI-PMG的超氧化物歧化酶(SOD)模拟达到297.10%,SCZN@SPI-PMG模拟达到35.13%。因此,SCCU@SPI-PMG可以被视为酶SOD的生物功能模仿,并且在抗氧化药物领域具有有希望的应用前景。
I.展示了li 2 o,li 2 o 2和lio 2之间的封闭系统的概念证明,而无需使用O 2气纳米多孔底物CO 3 O 4装有Li 2 O作为锂封闭电池的阴极。纳米多孔底物CO 3 O 4充当骨骼,促进Li 2 O,Li 2 O 2和Lio 2之间的稳定循环,而无需释放/服用O 2气体。II。 超氧化锂(LIO 2)稳定发现合适粒径的IR簇能够在Li-O 2电池中稳定LIO 2。 阐明了稳定机制。 iii。 NA-O 2电池中超氧钠(NaO 2)的稳定细胞环境对于在Na-O 2电池中形成排放产物至关重要。 NAO2在密封的NA-O 2电池中成功稳定。II。超氧化锂(LIO 2)稳定发现合适粒径的IR簇能够在Li-O 2电池中稳定LIO 2。阐明了稳定机制。iii。NA-O 2电池中超氧钠(NaO 2)的稳定细胞环境对于在Na-O 2电池中形成排放产物至关重要。 NAO2在密封的NA-O 2电池中成功稳定。NA-O 2电池中超氧钠(NaO 2)的稳定细胞环境对于在Na-O 2电池中形成排放产物至关重要。NAO2在密封的NA-O 2电池中成功稳定。
h 2 O 2在水溶液中的浓度已通过532 nm拉曼态度来确定。h 2 O 2是一种高需求的绿色氧化剂,其H 2和O 2的直接合成是传统生产过程的有前途的替代方法。拉曼光谱是针对H 2 O 2量化的快速,无损和可靠的分析技术,它避免了传统的碘测定的缺点(样品提取,制备了试剂的制备和长时间的分析)。已经设计了一个高压视图单元,以促进高压下的测量,通常在直接合成过程中发现。已经开发了一个彻底的校准模型,并在高压(5.0 MPa)和温度(最高45℃)的情况下进行了阀门。溶剂(水)用作纠正乘法扭曲的内标。分析技术的验证与经典碘化滴定相比产生了可重现和准确的结果,从而使单个校准模型用于一系列反应条件。通过在不同条件下分析H 2 O 2的分解反应,已建立了拉曼光谱对实时定量反应监测的可行使用。©2010 Elsevier B.V.保留所有权利。
在充分混合的间歇反应器中研究了在 20 ◦ C 和 pH = 7 的条件下使用过氧化氢对大肠杆菌的灭活反应。就灭活程度而言,当 H2O2 浓度高于 100 ppm(1 ppm = 2.94 × 10 − 5 mmol cm − 3)时,可达到预期目标,但与其他消毒技术相比,反应时间太长。氧化剂浓度低于 40 ppm 时,灭活实际上无效。使用改进的系列事件和多目标机理模型分析结果。在浓度高于 100 ppm 时,细菌浓度与时间的半对数图中的诱导时间减少。使用这两个修改模型发现,相对于过氧化氢浓度的反应级数不为 1。这两种数学描述都能很好地表示消毒剂浓度范围内的实验结果,并确认了一种使反应动力学表达式的起点可用于进一步研究优化操作条件(例如 pH 值和温度),包括与其他高级氧化技术的结合。还包括根据威布尔类模型 [1] 对数据的解释。© 2007 Elsevier BV 保留所有权利。
神经元的脂肪促脂肪促肌舒尼型及其绵羊模型(OCL6)是由未知功能的CLN6基因产物突变引起的溶酶体储存障碍。已经提出,线粒体功能障碍,包括线粒体蛋白质降解的缺陷,细胞器的增大和氧化磷酸化的功能变化,可能有助于疾病病理学。为了进一步探索CLN6的疾病机制,比较了正常和受影响的疾病。使用二维电泳分离蛋白,MS和免疫印迹,MNSOD(锰依赖性的超氧化物歧化酶)在人类和脑提取物的细胞和脑提取物中显着且有效地增加了。在受影响的纤维细胞中增强了MNSOD mRNA的活性和表达。共焦