甲烷是继二氧化碳之后第二丰富的人为温室气体。其温室气体效应在短期内明显更强,比二氧化碳更强大。然而,与二氧化碳相比,甲烷在大气中的寿命更短——平均为 8-12 年(二氧化碳可在大气中存在数百年)2。政府间气候变化专门委员会 (IPCC) 第五次评估报告 (AR5)3 估计,甲烷是人为辐射强迫总量的第二大贡献者,相当于二氧化碳辐射强迫4 的 58%。建议使用的 IPCC AR5 估计,甲烷的全球变暖潜能值 (GWP) 在 100 年的时间尺度上是二氧化碳的 28-34 倍5,在 20 年的时间尺度上是二氧化碳的 84-87 倍。通过减少甲烷排放来降低近期全球变暖速度的能力为社会提供了宝贵的气候风险管理缓解选项。
通过光子交换使具有不同特性的量子系统纠缠是构建未来量子网络的先决条件。证明在不同波长下工作的光的量子存储器之间存在纠缠进一步推动了这一目标的实现。在这里,我们报告了一系列实验,其中铥掺杂晶体用作 794 nm 光子的量子存储器,铒掺杂光纤用作 1535 nm 电信波长光子的量子存储器,以及通过自发参量下转换产生的光子对源。通过对从两个存储器重新发射后的光子进行表征,我们发现非经典相关性,其互相关系数为 g (2) 12 = 53 ± 8;纠缠保持存储的输入输出保真度为 F IO ≈ 93 ± 2%;和非局域性,违反了 Clauser-Horne-Shimony-Holt Bell 不等式,其中 S = 2 . 6 ± 0 . 2。我们的原理验证实验表明,纠缠在通过以不同波长工作的不同固态量子存储器传播时仍然存在。
本指南引用了性别平等指标 (GEI) 4:“与为员工提供灵活的工作安排以及为承担家庭或护理责任的员工提供的工作安排有关的雇佣条款、条件和做法的可用性和实用性”。GEI 代表了工作场所性别不平等现象持续存在的关键领域,以及可以通过有针对性的行动实现性别平等的关键领域。本指南旨在帮助雇主制定灵活的工作政策和/或战略,以支持工作场所的性别平等。请注意,本指南不包含有关育儿假政策或战略的信息。有关制定和实施育儿假政策的信息,请参阅工作场所性别平等机构的《制定领先实践育儿假政策》指南,有关哪些被视为政策和战略的一般信息,请参阅 WGEA 的报告指南。关键术语
空中空间技术演示2(ATD-2)国家航空航天局(NASA)团队与FAA和工业合作,继续为其在北德克萨斯州地区的最后3阶段现场评估做准备。ATD-2团队不再能够物理访问现场设施,因此已经过渡到远程培训和桌面练习,并通过虚拟平台制作了许多专门为每个现场用户设计的视频。另外,还要提供更大量的轨迹选项集(TOS)评估机会,如果持续交通量降低,ATD-2团队将系统部署到新的航空公司运营商中,为飞行操作员定义了其他用例,以增加TOS请求,并为替代ATC用户提高TOS Advisovals的新能力而开发了一种新的能力。NASA计划在2021年9月之前将最终技术转移到FAA和行业。
配对密度波(PDW)是一个长期以来的外来状态,没有外部磁场,具有振荡的超导顺序。到目前为止,在建立具有PDW远程顺序的2D微观模型以其基态建立了很少见。在这里,我们建议在蜂窝状晶格上分别使用最近的邻居(NN)和下一个neart-Neighbor(NNN)相互作用v 1和v 2的无旋转晶格模型中研究PDW超导性。By performing a state-of-the-art density-matrix renormalization group (DMRG) study of this t - V 1 - V 2 model at finite doping on six- leg and eight-leg honeycomb cylinders, we showed that the ground state exhibits PDW ordering (namely quasi-long-range order with a divergent PDW susceptibility).非常明显的是,这种PDW状态持续使用2D状的Fermi表面(FS)。据我们所知,这可能是具有2D样FS的系统中PDW的第一个受控数值证据。据我们所知,这可能是具有2D样FS的系统中PDW的第一个受控数值证据。
我们提出了Naybo 2的中子衍射研究,Naybo 2是一种候选量子旋转液体化合物,该化合物构成了磁性YB 3+离子的几何沮丧的三角形晶格。我们观察到持续到至少20 K的漫射杂志散射,这表明该系统中存在短距离磁相关性,直至相对较高的能量尺度。使用反向蒙特卡洛和杂志配对分布函数分析,我们证实了这些相关性的主要抗磁磁性,并表明可以通过在三角晶格上的海森伯格或XY旋转的非互操作层很好地描述了弥漫性散射数据。我们排除了Ising旋转和短距离条纹或120°的阶段,作为Naybo 2的候选基态。这些结果与Naybo 2中可能的QSL基态相一致,并展示了与短距离磁相关的材料组合的相互和真实空间分析的好处。
材料Sio 2。在拓扑模式下,电场高度局部位于分层结构的反转中心(也称为界面),并成倍地衰减到批量上。因此,当从战略上引入非线性介电常数时,出现了非线性现象,例如Biscable状态。有限元数值模拟表明,当层周期为5时,最佳双态状态出现,阈值左右左右。受益于拓扑特征,当将随机扰动引入层厚度和折射率时,这种双重状态仍然存在。最后,我们将双态状态应用于光子神经网络。双态函数在各种学习任务中显示出类似于经典激活函数relu和Sigmoid的预测精度。这些结果提供了一种新的方法,可以将拓扑分层结构从拓扑分层结构中插入光子神经网络中。
如 [16]-[18] 所示,仅当车速不太低且制动持续一段时间时,再生制动才会导致显著的能量存储。因此,控制策略应该能够根据实际驾驶条件有效评估是否执行再生制动或依靠机械制动。在牵引阶段也会出现同样的决策问题。确定电动机应提供多少机械扭矩来协助骑车人踩踏属于能量管理系统 (EMS) 的决策范围。已经提出了多项研究,其目标是优化用户的骑行质量并最大限度地提高电池中储存的能量 [13]。最后,如表一所示,许多研究都集中在优化能量存储上。这些研究的目标是为特定应用选择最合适的电池技术,并优化其数量以确保足够的续航里程来完成给定的驾驶任务 [14]-[15]。
据司法部 (DOJ) 报告,FOIA 已从一项备受赞誉但很少使用的法规发展到 2022 财年 (FY) 收到的超过 900,000 个独特请求。多年来,VA 的请求数量时增时减,但随着公众对所寻求记录的理解和广度的提高,复杂性通常呈上升趋势。该法规要求大多数请求在 20 天内得到答复。尽管联邦政府创建和维护的记录数量激增,请求者社区的期望也随之增加,但这一要求仍然存在。虽然 VA 在 2022 财年平均仅用 16.63 天就能处理“简单轨道”请求,但与许多机构一样,VA 难以满足 20 天的要求,而“复杂轨道”请求平均需要 65.44 天。由于这一挑战,VA 在 2022 财年结束时积压了 824 起案件,占 2022 财年处理案件总数的 4%。