抗癌药物的最新进展极大地提高了癌症患者的生存率 [ 1 , 2 ]。例如,在 1995 年至 2014 年间,在 19 个司法管辖区内,3,764,543 例符合条件的癌症病例中,涵盖大多数癌症类型的 1 年和 5 年净生存率都有所增加 [ 1 ]。高收入国家的生存率明显提高。患有原发性癌症的青少年和青年人的 5 年死亡率从 1975 年至 1984 年间确诊的 6.8% 下降到 2005 年至 2011 年间的 4.2% [ 2 ]。这些改进主要得益于靶向疗法的开发。例如,截至 2022 年 5 月 29 日,美国食品药品监督管理局 (FDA) 已批准 71 种小分子蛋白激酶抑制剂 (PKI) [ 3 ]。过去 35 年中,美国 FDA 批准了 100 种单克隆抗体用于治疗包括癌症在内的各种疾病 [4]。嵌合抗原受体 (CAR) 工程细胞疗法和抗体-药物偶联物 (ADC) 等新型治疗方式也为抗癌治疗的整体成功做出了贡献 [5-9]。然而,耐药性的出现阻碍了这些抗癌疗法的疗效,并对癌症的成功治疗提出了另一个挑战 [10]。耐药性分为两种类型:内在性(从头或原发性),即在使用药物之前就存在的耐药性;以及获得性(或继发性),即在药物治疗过程中产生的耐药性 [8,11]。耐药性通过多种机制发生,包括药物外排增加、致癌基因和/或肿瘤抑制基因突变、补偿性生存途径激活以及 DNA 损伤修复 [10,12]。三阴性乳腺癌 (TNBC) 具有侵袭性,占乳腺癌类型的 20% [13-17]。TNBC 的特点是缺乏激素受体(雌激素 (ER) 和孕激素 (PR) 受体)的表达,也没有人类表皮生长因子受体 2 (HER2) 的扩增,导致其在靶向治疗中的应用受到限制 [11、13、14、18]。具体而言,TNBC 对针对酪氨酸激酶受体的治疗具有内在耐药性,例如表皮生长因子受体 (EGFR) 和
尽管“合成生物学”一词早在 1912 年就已诞生,但这一领域直到最近 20 年才逐渐成熟。如今,合成生物学被概括为一种通过工程原理对生物体进行合理重新编程,使其具有所需功能的方法。该学科从电子电路组装中汲取灵感,致力于利用标准化生物部件构建的基因电路来改变生物行为。事实上,最初的努力已经表明,重新编程细胞行为以实现新功能是可行的。早期的成功案例,例如基因拨动开关 [ 1 ]、振荡器 [ 2 ] 和细胞间通讯电路 [ 3 ],预示着有朝一日创造出可编程生物体的可能性,这些生物体可以根据环境刺激自主改变其行为和功能。随着这些突破的出现,合成生物学在过去十年中取得了更快的进展,并在从治疗学到生物制造等各个领域得到了应用。例如,人们已经开发出能够感知和杀死癌细胞的微生物 [ 4 ],以及能够根据自身条件自主优化代谢途径的细胞工厂 [ 5 ]。在过去的二十年里,技术进步的惊人速度推动了合成生物学越来越跨学科的发展。鉴于迄今为止的这些发展,合成生物学有望提供未来的技术,以解决我们社会目前面临的关键问题。合成生物学采用“设计-构建-测试-学习”(DBTL)循环作为其开发流程。在过去十年中,DNA 测序和合成技术的大规模改进推动了“设计”和“构建”阶段的发展,从而显著降低了成本和周转时间。2007 年,测序一个人类基因组需要花费约 1000 万美元,而今天已降至约 600 美元。这种成本效益使我们能够对生物体的整个基因组进行测序并积累大量基因组信息
评论。J Acad Dermatol2021; 85:162-1 doi:10.1016/j。jaw.2020.06.047 3。Lee HH,Will和Al。 凉鞋,毛细血管,整体和普遍的流行病学: J Acad Dermatol 2020; 82(3):675-682。 doi:10.1016/j.jaad。 2019.08.032 4。 星A,Lambert J,Bervoets A.区域Altogeme:恢复诊断,免疫学和治疗方案。 临床扩张。 2021; 21(2):215-230。 doi: Pellicer Pellicer P,Navarre-Morease L,Núñez-Delegate E和Al。 我们对脱发性脱发的发病机理的微生物。 基因 2022; 13(10):1860。 doi:10,3390/genes131860 6。 nguyen av,soulica am。 皮肤免疫系统的动力学。 int J Mol Sci 2019:20(8):1 doi:10.3390/ijms2 byrd al,Belkaide Y,Secret Ja。 微生物组的人射线。 nat Rev Microbiol 2018; 16:143-1 doi:10.1038/nrmicro 右B,阿拉伯语E,Berardesca E和Al。 健康皮肤中的微生物,对皮肤科医生进行更新。 Vermaol Acad 2016; 30:2038-2047。doi:10.1111/jdv.13965 9。 先生的母亲,Acter S,SK Tamanna和Al。 微生物对皮肤皮肤的影响:皮肤皮肤,观察到过去的疗法和皮肤的皮肤。 微生物 2022; 14(1):2096995。 doi:10。 1080/1Lee HH,Will和Al。凉鞋,毛细血管,整体和普遍的流行病学:J Acad Dermatol2020; 82(3):675-682。 doi:10.1016/j.jaad。2019.08.032 4。星A,Lambert J,Bervoets A.区域Altogeme:恢复诊断,免疫学和治疗方案。临床扩张。2021; 21(2):215-230。 doi:Pellicer Pellicer P,Navarre-Morease L,Núñez-Delegate E和Al。我们对脱发性脱发的发病机理的微生物。基因2022; 13(10):1860。 doi:10,3390/genes131860 6。nguyen av,soulica am。皮肤免疫系统的动力学。int J Mol Sci2019:20(8):1 doi:10.3390/ijms2 byrd al,Belkaide Y,Secret Ja。 微生物组的人射线。 nat Rev Microbiol 2018; 16:143-1 doi:10.1038/nrmicro 右B,阿拉伯语E,Berardesca E和Al。 健康皮肤中的微生物,对皮肤科医生进行更新。 Vermaol Acad 2016; 30:2038-2047。doi:10.1111/jdv.13965 9。 先生的母亲,Acter S,SK Tamanna和Al。 微生物对皮肤皮肤的影响:皮肤皮肤,观察到过去的疗法和皮肤的皮肤。 微生物 2022; 14(1):2096995。 doi:10。 1080/12019:20(8):1 doi:10.3390/ijms2byrd al,Belkaide Y,Secret Ja。微生物组的人射线。nat Rev Microbiol2018; 16:143-1 doi:10.1038/nrmicro 右B,阿拉伯语E,Berardesca E和Al。 健康皮肤中的微生物,对皮肤科医生进行更新。 Vermaol Acad 2016; 30:2038-2047。doi:10.1111/jdv.13965 9。 先生的母亲,Acter S,SK Tamanna和Al。 微生物对皮肤皮肤的影响:皮肤皮肤,观察到过去的疗法和皮肤的皮肤。 微生物 2022; 14(1):2096995。 doi:10。 1080/12018; 16:143-1 doi:10.1038/nrmicro右B,阿拉伯语E,Berardesca E和Al。健康皮肤中的微生物,对皮肤科医生进行更新。Vermaol Acad 2016; 30:2038-2047。doi:10.1111/jdv.13965 9。 先生的母亲,Acter S,SK Tamanna和Al。 微生物对皮肤皮肤的影响:皮肤皮肤,观察到过去的疗法和皮肤的皮肤。 微生物 2022; 14(1):2096995。 doi:10。 1080/1Vermaol Acad2016; 30:2038-2047。doi:10.1111/jdv.13965 9。先生的母亲,Acter S,SK Tamanna和Al。微生物对皮肤皮肤的影响:皮肤皮肤,观察到过去的疗法和皮肤的皮肤。微生物2022; 14(1):2096995。 doi:10。1080/1Chen M,Che Y,Liu M等。 对肠道菌群的遗传见解和面部皮肤老化的风险:孟德尔随机研究。 皮肤技术。 2024; 30(3):E13636。 doi:10.1111/srt.13636 11。 Cao Q,Guo J,Chang S等。 肠道菌群和痤疮:Mendelian Ran-Donization研究。 皮肤技术。 2023; 29(9):E13473。 doi:10.1111/ srt.13473 12。 div> Guo J,Luo Q,Li C等。 肠道轴的证据:炎症性肠病和牛皮癣中的常见遗传结构。 皮肤技术。 2024; 30(2):E13611。 doi:10.1111/srt.13611 13。 Sekula P,Del Greco M F,Pattaro C等。 Mendelian随机化是使用观察数据评估因果关系的方法。 J Am Soc Nephrol。 2016; 27(11):3253-3265。 doi:10.1681/asn.2016010098 14。 Xu W,Zhang L,歌曲X。 探索肠道微生物群和脱发蛋白的联系:两样本的孟德尔随机分析。 int J Dermatol。 2024; 63(5):597-603。 doi:10.1111/ijd.17032 15。 Bowden J,Holmes MV。 荟萃分析和孟德尔随机化:综述。 res合成方法。 2019; 10(4):486-496。 doi:10.1002/jrsm。 1346Chen M,Che Y,Liu M等。对肠道菌群的遗传见解和面部皮肤老化的风险:孟德尔随机研究。皮肤技术。2024; 30(3):E13636。doi:10.1111/srt.13636 11。Cao Q,Guo J,Chang S等。 肠道菌群和痤疮:Mendelian Ran-Donization研究。 皮肤技术。 2023; 29(9):E13473。 doi:10.1111/ srt.13473 12。 div> Guo J,Luo Q,Li C等。 肠道轴的证据:炎症性肠病和牛皮癣中的常见遗传结构。 皮肤技术。 2024; 30(2):E13611。 doi:10.1111/srt.13611 13。 Sekula P,Del Greco M F,Pattaro C等。 Mendelian随机化是使用观察数据评估因果关系的方法。 J Am Soc Nephrol。 2016; 27(11):3253-3265。 doi:10.1681/asn.2016010098 14。 Xu W,Zhang L,歌曲X。 探索肠道微生物群和脱发蛋白的联系:两样本的孟德尔随机分析。 int J Dermatol。 2024; 63(5):597-603。 doi:10.1111/ijd.17032 15。 Bowden J,Holmes MV。 荟萃分析和孟德尔随机化:综述。 res合成方法。 2019; 10(4):486-496。 doi:10.1002/jrsm。 1346Cao Q,Guo J,Chang S等。肠道菌群和痤疮:Mendelian Ran-Donization研究。皮肤技术。2023; 29(9):E13473。doi:10.1111/ srt.13473 12。 div>Guo J,Luo Q,Li C等。 肠道轴的证据:炎症性肠病和牛皮癣中的常见遗传结构。 皮肤技术。 2024; 30(2):E13611。 doi:10.1111/srt.13611 13。 Sekula P,Del Greco M F,Pattaro C等。 Mendelian随机化是使用观察数据评估因果关系的方法。 J Am Soc Nephrol。 2016; 27(11):3253-3265。 doi:10.1681/asn.2016010098 14。 Xu W,Zhang L,歌曲X。 探索肠道微生物群和脱发蛋白的联系:两样本的孟德尔随机分析。 int J Dermatol。 2024; 63(5):597-603。 doi:10.1111/ijd.17032 15。 Bowden J,Holmes MV。 荟萃分析和孟德尔随机化:综述。 res合成方法。 2019; 10(4):486-496。 doi:10.1002/jrsm。 1346Guo J,Luo Q,Li C等。肠道轴的证据:炎症性肠病和牛皮癣中的常见遗传结构。皮肤技术。2024; 30(2):E13611。doi:10.1111/srt.13611 13。Sekula P,Del Greco M F,Pattaro C等。Mendelian随机化是使用观察数据评估因果关系的方法。J Am Soc Nephrol。2016; 27(11):3253-3265。 doi:10.1681/asn.2016010098 14。 Xu W,Zhang L,歌曲X。 探索肠道微生物群和脱发蛋白的联系:两样本的孟德尔随机分析。 int J Dermatol。 2024; 63(5):597-603。 doi:10.1111/ijd.17032 15。 Bowden J,Holmes MV。 荟萃分析和孟德尔随机化:综述。 res合成方法。 2019; 10(4):486-496。 doi:10.1002/jrsm。 13462016; 27(11):3253-3265。 doi:10.1681/asn.2016010098 14。Xu W,Zhang L,歌曲X。探索肠道微生物群和脱发蛋白的联系:两样本的孟德尔随机分析。int J Dermatol。2024; 63(5):597-603。 doi:10.1111/ijd.17032 15。Bowden J,Holmes MV。 荟萃分析和孟德尔随机化:综述。 res合成方法。 2019; 10(4):486-496。 doi:10.1002/jrsm。 1346Bowden J,Holmes MV。荟萃分析和孟德尔随机化:综述。res合成方法。2019; 10(4):486-496。 doi:10.1002/jrsm。 13462019; 10(4):486-496。 doi:10.1002/jrsm。1346
1. Wycislo KL, Fan TM。犬骨肉瘤的免疫治疗:历史和系统回顾。J Vet Intern Med。2015;29(3):759-769。2. Vail D、Thamm D、Liptak J 编。Withrow 和 MacEwen 的小动物临床肿瘤学。第 6 版。密苏里州圣路易斯:桑德斯;2019 年。3. Hoption Cann SA、van Netten JP、van Netten C。William Coley 博士和肿瘤消退:历史或未来。Postgrad Med J。2003;79(938):672-680。4. Lascelles BD、Dernell WS、Correa MT 等。接受骨肉瘤保肢手术治疗的犬术后伤口感染与生存率提高有关。 Ann Surg Oncol. 2005;12(12):1073-1083。5. Chen YU,Xu SF,Xu M,Yu XC。骨肉瘤患者术后感染和生存率:对骨肉瘤免疫疗法的再思考。Mol Clin Oncol. 2015;3(3):495-500。6. Liptak JM,Dernell WS,Ehrhart N,Lafferty MH,Monteith GJ,Withrow SJ。皮质同种异体移植和内置假体在远端桡骨肉瘤犬保肢手术中的应用:两种不同保肢技术的前瞻性临床比较。Vet Surg. 2006;35(6):518-533。7. Owen LN,Bostock DE。静脉注射 BCG 对正常犬和自发性骨肉瘤犬的影响。 Eur J Cancer . 1974;10 (12):775-780。8. MacEwen EG、Kurzman ID、Rosenthal RC 等。静脉注射脂质体包裹的胞壁酰三肽治疗犬骨肉瘤。J Natl Cancer Inst . 1989;81(12):935-938。9. Dow S、Elmslie R、Kurzman I、MacEwen G、Pericle F、Liggitt D。对编码白细胞介素-2基因的脂质体-DNA复合物在患有骨肉瘤肺转移的犬中的I期研究。Hum Gene Ther . 2005;16(8):937-946。10. Modiano JF、Bellgrau D、Cutter GR 等。新辅助 fas 配体基因治疗诱发的炎症、凋亡和坏死可提高自发性骨癌犬的生存率。分子治疗学。2012;20(12):2234-2243。11. Visonneau S、Cesano A、Jeglum KA、Santoli D。使用人类细胞毒性 T 细胞系 TALL-104 对犬骨肉瘤进行辅助治疗。临床癌症研究。1999;5(7):1868-1875。12. Mason NJ、Gnanandarajah JS、Engiles JB 等。使用 HER2 靶向李斯特菌进行免疫疗法可诱导 HER2 特异性免疫并在犬骨肉瘤的 I 期试验中显示出潜在的治疗效果。临床癌症研究。 2016;22(17):4380-4390。13. Aratana Therapeutics 获得犬骨肉瘤治疗药物有条件许可 [新闻稿]。堪萨斯州利伍德:Aratana Therapeutics, Inc. 2017。14. Aratana Therapeutics。犬骨肉瘤疫苗,活李斯特菌载体包装。堪萨斯州利伍德。2017。
Giulia Zancolli,洛桑大学生态与进化系,瑞士洛桑1015。电子邮件:giulia.zancli@gmail.com; Agostinho Antunes,CIIMAR/CIMAR,海洋与环境研究跨学科中心,Porto de Leix其他Porto de LeixThes Cruise Terminal,AV。 诺顿·德·马托斯将军,S/N,4450-208 Porto,葡萄牙。 电子邮件:aantunes@ciimar.up.pt†第一名合着者。电子邮件:giulia.zancli@gmail.com; Agostinho Antunes,CIIMAR/CIMAR,海洋与环境研究跨学科中心,Porto de Leix其他Porto de LeixThes Cruise Terminal,AV。诺顿·德·马托斯将军,S/N,4450-208 Porto,葡萄牙。电子邮件:aantunes@ciimar.up.pt†第一名合着者。电子邮件:aantunes@ciimar.up.pt†第一名合着者。