CHH米高梅大学生物技术米高梅大学。 Sambhaji Nager 431001,印度。 摘要:PGPR植物生长促进根瘤菌是最有益的细菌菌株,可通过直接和间接机制增强植物的生长和生物控制。 PGPR被确定为有效的微生物作为植物生长的生物肥料。 因此,进行了本研究以分离并表征从根际土壤中的PGPR。 从土壤样品中分离出总数十个分离株,并通过不同的表征技术来表征。 在本研究中,十个分离物中的两个10 -5 F1和10 -5 F3显示了IAA高产生,显示了Pikovskaya琼脂中磷酸盐溶解活性,几乎所有分离株在过氧化氢酶测试中均为阳性,并显示出针对曲霉菌物种的抗真菌活性。 索引项 - 根瘤菌,磷酸盐溶解,抗真菌活性。CHH米高梅大学生物技术米高梅大学。Sambhaji Nager 431001,印度。摘要:PGPR植物生长促进根瘤菌是最有益的细菌菌株,可通过直接和间接机制增强植物的生长和生物控制。PGPR被确定为有效的微生物作为植物生长的生物肥料。因此,进行了本研究以分离并表征从根际土壤中的PGPR。从土壤样品中分离出总数十个分离株,并通过不同的表征技术来表征。在本研究中,十个分离物中的两个10 -5 F1和10 -5 F3显示了IAA高产生,显示了Pikovskaya琼脂中磷酸盐溶解活性,几乎所有分离株在过氧化氢酶测试中均为阳性,并显示出针对曲霉菌物种的抗真菌活性。索引项 - 根瘤菌,磷酸盐溶解,抗真菌活性。
促进根瘤菌(PGPR)的植物生长的应用为提高农作物的生长和生产率提供了环保的方法。这项研究评估了竹根对生长指标(例如茎直径和分支计数)的PGPR的影响,以及产量性状(例如POD计数,新鲜和干燥的POD重量,以及收获的豆重量)(Vigna Radiata L.)。竹根被选择为PGPR的独特来源,因为它为有益微生物的有利环境增强了环境,从而增强了植物的营养吸收。遵循完全随机的设计,测试了六个PGPR剂量:0 ml/polybag(H0),10 ml/polybag(H1),20 ml/polybag(H2),30 mL/polybag(H2),30 mL/polybag(H3),40 ml/polybag(H4),40 ml/polybag(h4)和50 ml/polybag(H5)(h5)周日结果显示,在植物阶段后期有显着的生长促进,H3得出的最佳结果改善了茎直径,分支数,POD计数和种子干重。较高的剂量(H4,H5)对生长产生了负面影响,这可能是由于微生物竞争,营养失衡或压力所致。这种环保方法展示了竹子衍生的PGPR的潜力,可以提高绿豆生产率,支持粮食安全和盈利能力。进一步的研究应研究其长期影响和适应能力,包括各种农作物和农业系统,从而增强了其可持续农业的效用。关键字:绿豆产量的优化; pgpr源自竹子;根际生态学如何引用:Nareswari,A.H.P。,Saptorini和Noviady,I。(2025)。在绿豆生长和产量上优化竹根PGPR剂量。Div> Biolink:环境生物学杂志,工业,健康,第11卷(2):222-234
我们非常高兴地代表您代表亚洲PGPR协会及其在印度9个亚洲PGPR印度分会的可持续农业章节,即“可持续农业的综合方法:机会与挑战”,计划于2024年7月29日至30日在Bharathiar coimimbatore举行。本次会议是与亚洲PGPR可持续农业协会合作组织的,由各种教育,工业,企业家和媒体合作伙伴支持。由于PGPR相关的技术目前正在经历急剧增长,因此对PGPR和农作物之间的相互作用的研究已经变得至关重要,被认为对可持续和有机农业的未来起着关键作用。pgpr在可持续农业中表现出重要的作用,可以通过大量降低合成肥料的大量降低,而农药的使用大大减少是一个巨大的挑战。本次会议向生物繁殖者,生物杀菌剂,生物农药,生物刺激剂,生物草药,生物抑制剂,生物氯性药物等越来越重要。,确定联盟中新兴的技术。因此,我们丝毫欢迎您加入我们,并见证农业在使用PGPR策略中使用PGPR策略的进步,以在安全粮食生产中为绿色革命的下一代革命。,在使用PGPR相关的技术到实验室的技术方面,输出将构成一个强大的基础,以解决全球粮食安全问题。在本次会议上,我们将学术界,研究人员,企业家,政策制定者,进步农民和政府官员组成,由来自印度各地的技术专家组成的核心团队,以旨在考虑并了解开发PGPR相关技术的优势和缺点,以供全国各地的农业社区使用。亚洲PGPR印度9章全国会议的议程是通过学术界和行业远见者之间的国家和全球网络建立一个很好的科学审议和讨论PGPR研究的平台。此外,邀请了对PGPR进行研究的人,院士,院士,工业家和政策制定者的可持续农业研究合作,这反过来又对年轻人的创业机会有用。
在这项研究中,从局部来源分离出的9种芽孢杆菌菌株,通过小麦,5个杆菌,1个假单胞菌和1个stenotrophomonas菌株检查了从局部来源鉴定出的PGPR(促进根瘤菌生长)的特性。它是用无菌小麦种子以二元和三重寿司组合的形式处理的,该组合是由从每种细菌菌株和相等体积的每个细菌菌株中制备的生物接管剂(10 8 COB/mL)形成的。无菌玉米种子被放入盆中,并以二进制,三重和四重奏组合的形式接种生物染料后,以单个菌株和相等的体积混合。试验被设计为三个重复。在受控条件下,小麦和玉米种子的发展尝试分别持续了30和45天。与对照组相比(B. uttilis b.3.p.5 + B.枯草脂蛋白1.19 + B.枯草厂36.5)和(B. uptilis b.3.p.5 + B.单纯b.1.2.k),用于埃及(B.枯草1.19 + B.单纯B.1.2.2.2.k + B. Megaterium 42.3)和(B. Megaterium 42.3 + B.枯草厂36.5 + S. Rhizophila 118.1 + P.氯藻氯藻P-102-B)。决定。关键字:PGPR,协同作用,小麦,玉米,种子开发
这项工作假设水凝胶和生物启动剂的单个应用以及两者的混合物将显着改善玉米在干旱胁迫下的生长。另外,预计每种处理获得的结果应等于或更好,大于用完全灌溉的对照锅获得的结果。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
IgE plays a central role in the physiopathology of allergic rhinitis (AR).IgE-抗原免疫复合物对肥大细胞的结合触发其脱粒和炎症介质的释放,并与其他效应细胞(嗜酸性粒细胞,嗜碱性粒细胞)的募集。这是在我们经典发现高血清IgE水平的过敏性疾病治疗中使用抗IgE抗体的基础。Omalizumab is the first and best-known anti-IgE [1].It is a recombinant humanized IgG1 monoclonal antibody [2].它与IgE的Cε3结构域结合而不诱导肥大细胞和嗜碱性粒细胞脱粒(IgE通过其Cε3结构域与肥大细胞和嗜碱性粒细胞的FcεRI受体结合,从而导致脱粒化)[3]。This prevents IgE binding to effector cells, thereby inhibiting their stimulation.Through this mechanism of action, omalizumab reduces serum IgE levels and the number of FcεRI receptors [1].It also reduces IgE production by inhibiting allergen presentation [1].IgE-dependent activation and degranulation of mast cells and basophils is thus inhibited.
植物生长促进根际细菌 (PGPR) 通过增加养分吸收在农业生产中发挥着至关重要的作用 (Gonzalez 等人 2015 年,Chaud-hary 等人 2021b)。PGPR 促进植物生长可以通过直接或间接机制实现。在直接机制中,植物生长可能通过氮固定、磷酸盐和钾溶解 (Khan 等人 2014 年) 以及产生吲哚乙酸、1-氨基环丙烷-1-羧酸 (ACC) 等物质来促进。而在间接机制中,PGPR 促进植物生长可以通过产生抗生素或在植物中产生系统性抗性来减少植物病原微生物的有害影响 (Kumar 等人 2018 年) 来实现。PGPR 主要有两种类型:细胞外 PGPR (ePGPR) 和细胞内 PGPR (iPGPR)。固氮菌、沙雷氏菌、芽孢杆菌、农杆菌等细菌属于 ePGPR 类,而全根瘤菌、慢生根瘤菌、中生根瘤菌、根瘤菌等微生物属于 iPGPR 类。土壤中的磷以可溶形式存在,因此不易被植物吸收。PGPR 有助于植物吸收
摘要植物生长促进根瘤菌(PGPR)是在根际,土壤Sur圆形植物根中发现的一组有益细菌。这些细菌通过各种机制为增强植物生长提供了巨大的潜力。对PGPR至关重要的是具有不仅支持植物生长,而且保持生态友好的特定特征。考虑到农业中化学投入的使用增加,这一点尤其重要,这导致土壤中有害物质的积累,导致随着时间的推移生育率降低。在PGPR群中的各种细菌物种中,假单胞菌荧光症是众所周知且经过广泛研究的一种。研究人员已经对PGPR对植物生长的影响进行了研究,从实验室实验到延伸到温室试验。这些研究表明,PGPR作为生物肥料和生物农药的积极影响。已经探索了具有特定载体的PGPR菌株的配方,以有效地将细菌递送到土壤,然后将细菌传递给植物。这种制剂有可能减少农业实践中对化肥的依赖。一旦开发了PGPR的配方,它便可以用于市场,并容易为农场提供。这可以促进在农业地区促进有机或可持续的农业实践,从而减少对合成化学品的依赖并促进可持续的农业实践。
最近的许多研究强调了植物生长促进(Rhizo)细菌(PGPR)在支持植物发育中的重要性,尤其是在生物和非生物胁迫下。最关注植物生长 - 促进所选菌株的性状以及后者对植物生物量,根建筑,叶片区域和特定代谢物积累的影响。关于能量平衡,植物的生长是投入(光合作用)和几个输出(即呼吸,渗出,脱落和草食)的结果,在PGPR植入植物相互作用的古典研究中经常被忽略。在这里,我们讨论了PGPR及其代谢物在植物生态生理学上触发的修饰的主要证据。我们建议使用叶子气体交换检测PGPR诱导的光合作用活动的变化,并建议根据实验的特定目标设置正确的时间来监视植物响应。这项研究确定了挑战,并试图向从事PGPR植物相互作用的科学家提供未来的方向,以利用微生物在改善植物价值方面的应用。