2023 年 7 月 11 日 — - 激活植物的防御/免疫系统(诱导系统性抗性 [ISR])。- 含有促进植物生长的根际细菌 (PGPR)。- 快速...
摘要:许多生态因素会影响植物的生存和生长能力,其中干燥对干旱和半干旱地区的植物生长有很大的限制。响应特定的环境压力,植物可以使用最有效的细菌来支持和促进其生长和发育。今天,促进根瘤菌(PGPR)的植物生长被广泛用于减轻植物生长的干旱压力。在这项研究中,干旱对Festuca ovina L.发芽,生长和营养吸收的影响在阶乘测试中使用PGPR进行了四个水状态下的完全随机设计。土壤含水量保持在100%FC(现场容量),70%FC(FC),50%FC和30%FC。用氮杂杆菌Vinelandii,Pantoea grogomerans + Pseudomonas putida和生物肥料的混合物接种处理。的结果表明,当分别使用A. vinelandii和P. grogomerans + P. p. putida时,干旱应激的影响显着降低(P <0.05),但是,生物肥料的综合治疗对种子发芽的影响要比单个应用更大。P. agromerans + P. p.utida在30%FC的条件下导致茎,根长度和植物干生物量的增加。在30%的FC条件下,观察到最高的营养摄取量是对生物肥料的综合治疗。因此,使用分别应用或组合使用的A. vinelandii和P. groclomerans + P. p.putida,通过增加的发芽指数,干重,茎长和根长度来增加对卵藻中干旱胁迫的耐受性。由于PGPR对干旱条件下植物的生长特征的有益作用以及干旱压力的负面影响的减少,因此建议使用氮杂杆菌和假单胞菌进行接种。pgpr作为一种负担得起的环保方法,可以改善水压缩牧场中的草料生产。
1。引言现代农业必须继续养活不断扩大的世界人口。为了支持不断增长的人群,已经采用了最大化生物量生产的策略。著名的例子之一是“绿色革命”,它显着提高了农作物的产量来消除饥饿。除了生物质的产量外,作物的营养价值是提供适当营养的另一个重要考虑因素。除了热量摄入量和诸如N,P,K和微量营养素之类的大量营养素外,Zn人类还依靠食品作物来获得某些微量营养素。由于饮食不足的微量营养素(例如矿物质和维生素)被视为“隐藏饥饿”而导致的营养不良。根际是植物根部与土壤之间的重要界面,当考虑植物与有益细菌之间的相互作用时,有助于可持续农业。大约35年前,克洛珀首先描述了促进植物生长的根瘤菌(PGPR)在植物生长和防御中的作用[1]。PGPR与植物根有关,在直接或间接促进植物生长中起着重要作用。生物铜质化和植物刺激是植物生长的直接启动子机制,可同时最大程度地减少化学肥料的使用并促进植物生长,以及具有生物防治和植物刺激性能的细菌,以增强植物中养分和疾病的控制。当前的情况例证了使用这些PGPR的植物 - 微生物相互作用领域的工作,该植物 - 微生物相互作用的工作重点是钉书钉作物的生物化。谁承认对人体正常功能至关重要的微量营养素,即。硒(SE),铁(Fe)和锌(Zn),并为PGPR介导的生物强化提供了很大一部分[2]。小麦是碳水化合物的重要来源。在全球范围内,当小麦作为全谷物食用时,它是人类食品中蔬菜蛋白的主要来源,是多种营养素和饮食纤维的来源[3]。在100克中,小麦提供了327公斤的食物能量,是多种必需营养素的丰富来源,例如蛋白质,饮食纤维,锌,铁,锰,磷和烟酸。几种B维生素和其他饮食矿物质的含量很大。小麦是13%的水,71%的碳水化合物和1.5%的脂肪。其13%的蛋白质含量主要是面筋。根据新蛋白质
微生物相互作用对于成功建立和维持微生物人群至关重要。这些相互作用通过环境识别,然后是分子和遗传信息的转移,其中包括许多机制和分子类别。微生物在环境中很少遇到单个物种种群,因为在不同栖息地的研究表明,通常在一个小样本中检测到巨大的丰富性和丰度变化。根际已知是微生物活性的热点。在那里,根际是一个具有较高微生物多样性的环境。根瘤菌作为PGPR可以在促进植物的营养获取中发挥重要作用,这有利于引起根本生物质量积累的因素和/或阻碍那些可能对根系开发产生底特ri心理影响的因素。可以通过间接(对病原体)或直接(例如,植物性生产)的作用方式来实现PGPR的这种作用。细菌菌株之间的植物生长机制不同,在很大程度上取决于这些菌株释放的有机化合物的类型。例如,促进植物生长的激素和其他由Bacte RIA释放的次级代谢产物可以改变植物的生长和发育。最近,据报道,植物和相关细菌之间的关联已经达到这样的水平,因此如果没有其相关细菌,宿主植物就无法发育。
摘要:在压力或最佳条件下,植物培养了一个特定的共生微生物行会,以增强包括代谢调节在内的关键功能。尽管植物基因型在微生物选择中的作用有充分的文献证明,但该基因型特异性微生物组装在维持宿主稳态方面的潜力仍未得到充分研究。在这项研究中,我们旨在评估与植物增长促进根瘤菌(PGPR)的橄榄基因型对微生物接种对微生物接种的特异性(PGPR),以查看先前与本地或质量微生物的抗压植物是否会在叶子中表现出任何变化。在受控和压力条件下测试了两个突尼斯精英品种,Chetoui(干旱敏感)和Chemleli(耐旱)。叶片样品,以鉴定未靶向的代谢产物。根和土壤样品用于提取使用16S rRNA扩增子测序的细菌群落分析的微生物基因组DNA。分别将分数分析,聚类分析,热图,Venn图和Krona图表应用于代谢和微生物数据。结果表明,在应力和接种条件下,Chetoui品种的叶子代谢组的动态变化。在最佳状态下,PGPR财团引起了敏感变化的代谢模式的明显变化,与在耐旱的品种中观察到的植物化学相一致。这些变化涉及脂肪酸,生育酚,苯酚,甲氧基诺酚,硬霉素,三萜和糖。另一方面,表现出可比代谢谱的化学品种似乎不受应力和接种的影响,可能是由于其耐受能力。微生物在治疗中的分布明显不均匀。测试的幼苗遵循各种特定于选择有益的土壤细菌以减轻压力的策略。仅在两个品种的最佳条件下才检测到一种高度丰富的湿型接种物,这使得植物基因型的水分历史成为塑造微生物群落的选择性驱动器,从而预测大型生态系统中微生物活性的有用工具。
Biodata名称:教授。Piyush Pandey指定:教授系:微生物学系:阿萨姆大学,阿萨姆邦Silchar,阿萨姆邦地址:阿萨姆邦大学微生物学系,阿萨姆邦,阿萨姆邦 - 印度788011,印度电子邮件:piyushddn@gmail@gmail.com简介Piyush Pandey教授Piyush Pandey教授Piyush Pandey在Assam India of Assam India of Assam India,India。他拥有二十三年的学术和研究经验。他的研究小组研究了与植物相关的细菌,以及它们在农业和环境中的潜在应用。他在高影响力,三本书的期刊上发表了150多篇论文,并获得了16篇研究补助金。他因从事植物 - 裂层介导的多芳族碳氢化合物的生物修复而获得“ DBT-CENTRE卓越奖”。此外,他还是加拿大约克大学的SICI-SMP研究员的“海外同学”,并访问了日本的Shizuoka University。Pandey教授是国际环境植物学家学会的会员,是几个科学社会的成员,并在知名的期刊中扮演着社会作用。他一直在广泛研究土壤和植物微生物,环境污染物的根茎修复和环境基因组学。他的研究贡献已获得Springer,环境可持续性协会和亚洲PGPR学会的授予。 他有两项印度专利。 研究出版物(选定)他的研究贡献已获得Springer,环境可持续性协会和亚洲PGPR学会的授予。他有两项印度专利。研究出版物(选定)
具有对植物致病真菌的拮抗活性的植物生长根瘤菌(PGPR)是基于生物防治活性开发新型植物保护产品的宝贵候选者。这种产品制定的第一步是筛选所选微生物的潜在效果。在这项研究中,从番茄植物的根际分离了非致病性根瘤菌,并评估了其对三种产生霉菌毒素的替代品的生物防治活性。对其生物防治潜力的评估涉及研究真菌生物量和替代毒素的减少。开发的排名系统允许在最初的85个分离株中识别12种表现最佳菌株。几个根瘤菌显示出真菌生物量(高达76%)和/或霉菌毒素产生(高达99.7%)的显着降低。此外,相同的分离株还表现出植物生长促进(PGP)特征,例如铁载体或IAA产生,无机磷酸盐溶解和氮固定,从而确保PGPR的多面性质。芽孢杆菌种,尤其是双链球菌和两种枯草芽孢杆菌菌株,在减少真菌生物量方面表现出最高的效率,并且在降低霉菌毒素的产生方面也有效。分离物,例如肠杆菌Ludwigii,肠杆菌,肠杆菌,Nematodiphila,Pantoea groglomerans和Kosakonia cowanii表现出适度的效果。结果表明,通过利用不同微生物菌株的多种能力,一种基于财团的方法将提供更广泛的效果,从而为可持续农业提供了更令人鼓舞的解决方案,并解决了与作物相关的生物挑战的多面性质。
挥发性有机化合物(VOC)由潜在的植物生长促进根瘤菌(PGPR)在植物相互作用中起重要作用。然而,这种现象的基础机制尚不清楚。我们的发现表明,PGPR菌株Vallismortis(Extn-1)对烟草植物生长的VOC的影响取决于所使用的培养基。从含糖媒体(例如马铃薯葡萄糖琼脂(PDA)和国王B(KB)媒体)发行的VOCs非常有效。然而,暴露于营养琼脂(NA),胰蛋白酶大豆琼脂(TSA)和Luriabertani(LB)中的VOC暴露导致氯化和发育迟缓的植物生长。这种效果是由大量氨的排放引起的,从而改变了植物生长培养基的pH值。在VOC中暴露于10天的幼苗,即使在温室条件下消除了VOC,也会表现出改善的生长。与未处理的对照相比,与未处理的对照相比,用VOC的种子启动24和48小时,与未经处理的对照相比,与24小时的治疗相比,接触48小时的种子更好。使用与气相色谱 - 质谱法(GC-MS)结合的固相微萃取(SPME)在不同培养基中发出的VOC的化学表征,显示所有光谱中存在2,3-丁烷甲苯和一氧化氢。然而,1-丁醇是在Kb和Na中生长的Extn-1的显着峰值,而Acetoin在PDA中最高,其次是KB。Heneicosane和苯甲醛是在NA培养基中仅生产的,这些合成化合物改善了I-Plate分析的生长。这项工作表明从Extn-1释放的VOC对于ExtN-1的增长效应很重要。
可观的农业系统努力最大程度地减少使用昂贵和环境不友好的合成农药/农药的使用,并优化使用替代管理策略来改善土壤生育能力并控制土壤传播病原体。更可持续的农业,即“在生态上,经济上可行,社会公正和人道”的目的应旨在在没有或很少的外部投入的土壤中回收矿物质,在农业生态系统中保持高生物多样性,并更好地利用土壤植物 - 微生物相互作用 - 用于植物营养和保护。答案是生物肥料,这是一种现已在许多国家使用的环保肥料。在过去的几十年中,在世界各地,使用生物肥料-PGPR用于可持续农业。
可持续农业在当今世界至关重要,因为它提供了满足我们农业需求的潜力,这是常规农业无法做到的。这种类型的农业使用一种特殊的农业技术,可以充分利用环境资源,同时确保不会对其造成损害。因此,该技术对环境友好,并保证了安全健康的农产品。微生物种群对于推动农业生态系统的稳定性和生产力的基本过程是基础。几项研究涉及了解土壤微生物群落的多样性,动态和重要性的改善及其在农业生产力中的有益和合作作用。但是,在这篇综述中,我们仅描述了促进植物生长(PGPR)和蓝细菌在安全和可持续的农业发展中的贡献。