稀土(re)元素是一组17个化学元素,包括15个灯笼以及Yttrium和Scandium。由于其特殊特性(例如催化,冶金,核,电气,电磁和发光)以及许多现代技术,环境和经济领域的各种应用,因此已确定为关键要素。因此,在过去几十年中,对RE的需求显着增加。这一需求导致采矿活动的增加,因此将RE释放到周围环境中,从而对人类健康和环境造成了潜在的威胁。因此,调查导致新的解决方案,用于从电子,采矿和工业废物等替代资源进行回收的新解决方案,一直在迅速增长。尽管如此,回收仍然非常困难,昂贵,目前尚未被视为重要的解决方案。当传统的采矿方法不再具有成本效益时,植物管理的概念是一个有前途的解决方案,更不用说植物提供的所有生态系统服务了。植物萃取服务允许从土壤或工业废物(例如,磷酸产生的磷酸化)中提取和回收,具有经济增加的价值。迄今为止,大约二十种高积累植物(几乎是蕨类植物,例如双骨ter骨)会累积高浓度的RE,尤其是在其侵蚀部位。虽然天然细菌在动员矿石中的潜在作用仍然略有文献记载,但促进根瘤菌(PGPR)的植物生长的作用却少得多。pgpr确实能够动员金属和/或刺激植物发育,以增加植物所提取的植物的量,然后具有较高的植物萃取效率。迄今为止,只有少数研究专门用于使用耦合的生物加强 - 屈服。本综述总结了有关1)重新源的数据(重新蓄积的沉积物,自然丰富的土壤,废物,废物)及其在这些矩阵中的生物利用度,2)植物,2)植物被确定为重新获得过度振兴的人及其潜在的潜在的潜在的隔离和选择的隔离和选择的隔离状态,以弥补隔离状态,以隔离和选择,以隔离和选择,以隔离和选择,这些隔离状态既有隔离型的杂物,都可以融入杂物。植物剥夺性能和4)生物强加辅助的植物萃取研究。
土壤受到有毒金属污染会降低农业产量和食品质量。生物修复是恢复受污染土壤的另一种方法,由具有不同机制(例如产生铁载体)的根际细菌介导,以抵消重金属的毒性。铁载体是螯合铁的小有机分子,铁是所有生物生命所必需的元素,并且是不同细胞过程所必需的。了解铁载体的合成机制及其对生物修复的潜在影响对于实施生态替代方案以减少使用化学品造成的不利影响至关重要。本综述介绍了铁载体的种类、合成、运输和调控;还介绍了在受污染环境的生物修复中使用产生铁载体的植物生长促进根际细菌 (PGPR) 的主要发现,以便整合信息,开发新的可持续替代方案,减少有毒金属对农业生产造成的负面影响。
生物肥料(也是生物饮用剂)是一种物质,其中包含活生生物质,当将其应用于种子,植物表面或土壤时,将根茎或植物内部定居并通过增加对宿主植物的主要营养物质的供应或可用性来促进生长。生物肥料通过氮固定,溶解磷以及通过合成生长促进物质刺激植物生长的自然过程来增加营养。生物肥料可以预期减少化学肥料和农药的使用。生物肥料中的微生物恢复了土壤的自然养分循环并建立土壤有机物。通过使用生物肥料,可以种植健康的植物,同时增强土壤的可持续性和健康状况。由于它们扮演多个角色,因此对这种有益细菌的首选科学术语是“促进根瘤菌的植物生长”(PGPR)。因此,它们通过微生物及其副产品提供有机养分来丰富土壤生育能力和满足植物营养的需求非常有利。因此,生物肥料不包含任何对活土壤有害的化学物质。
INTRODUCTION Rhizosphere bacteria that positively influence plant growth and productivity of commercially important crops are commonly referred to as Plant Growth Promoting Rhizobacteria (PGPR) and include bacteria of the genera Azotobacter, Azospirillum , Arthrobacter, Bacillus, Agrobacterium, Rhizobium, Flavobacterium, Burkholderia, Enterobacter,克莱伯斯ella,假单胞菌,xanthomonas和serratia。根渗出液的分泌有助于调节微生物动力学及其与植物的相互作用,进而在促进植物生长中起着重要作用。此外,根际中的这种共生相关性还赋予对由真菌,细菌和病毒病原体引起的各种疾病的保护。这些细菌直接通过使用刺激性生长素和细菌的组合或通过刺激性生长素和细菌的形式组成的刺激性的生长素,gibberellins和componial compan和compoa,并通过刺激性的生产力和细菌来通过刺激性的生长蛋白和胞质的组合来直接影响植物的生长和分泌。 N.I.K.al-Barhawee和F.A.al-Wazzan。2025。从新分子表征的根瘤菌菌株中产生吲哚-3-乙酸的估计。农业科学全球创新杂志13:85-94。[2024年9月2日收到; 2024年10月6日接受;出版于2025年1月1日]
印度,普拉德什。 * 通讯作者电子邮件:rao.muralidhara@gmail.com 收到日期:2022 年 1 月 19 日 接受日期:2022 年 2 月 2 日 发表日期:2022 年 2 月 9 日 摘要:生物肥料也被用来帮助农民改变命运。在一些发达国家,它已被证明是一项很有前途的技术,然而在发展中国家,生物接种剂的使用受到许多因素的限制。对生物接种剂及其使用的科学理解可以为其成功应用铺平道路。生物肥料是一种包括活微生物的材料,当添加到植物、植物表面或土壤中时,它们会在根际或植物内部定殖,并通过增加宿主植物的主要营养物质的供应或可用性来促进生长。生物肥料通过固氮、磷溶解和产生促进生长的化合物等自然过程为植物提供营养。生物肥料利用微生物来维持土壤的天然氮平衡并增加土壤有机质。通过使用生物肥料,可以培育优良植物,同时改善土壤的可持续性和保护性。生物肥料可能会限制传统肥料和化学品的使用,但无法完全消除它们。植物生长促进根际细菌是这些有益细菌的首选科学名称,因为它们具有多种功能(PGPR)。关键词:PGPR、固氮、磷溶解、微生物。简介自过去二十年以来,气候变化已成为国家、政策制定者和农民面临的最严重问题之一。世界人口增长的最终结果是气候条件的转变。与此同时,需要增加农作物产量以确保世界人口不断增长的粮食可持续性。由于土地供应稀缺,农民必须使用大量化学肥料和农药才能获得全部农作物产量。这些肥料是化学合成的合成化合物,包括氮、磷和钾,过量使用会直接或间接地污染土壤、空气和水(Galloway 等人,2008 年;Youssef 和 Eissa,2014 年)。持续使用化学肥料、杀生物剂和农药会对根际或施用区域中的现有微生物群落产生负面影响,包括微生物、真菌、蓝藻和原生动物,从而导致自然环境失衡(McLaughlin 和 Mineau,1995 年)。长期使用会对植物和土壤的健康、质地和肥力产生负面影响,导致环境恶化以及人类健康和福祉。另一方面,传统农业实践严重依赖大量使用合成肥料和农药来提供植物营养和控制疾病(Vasile 等人,2015 年)。合理使用这些化学投入的好处是不可否认的,不仅对植物生长、作物产量和效率有好处,而且对农民的收入也有好处。不幸的是,人工用品的增加使用最终会污染水、空气和土壤,造成严重
摘要:在可持续农业中,植物营养是最重要的元素。生物肥料引入微生物,以改善植物的营养状况并提高其对农作物的可及性。为了满足不断增长的人口的需求,有必要使用正确类型的肥料来生产健康的作物,以便为它们提供所需的所有关键营养。但是,对化肥的依赖越来越多,正在破坏环境并对人类健康产生负面影响。因此,据信,将微生物与化学肥料一起使用,是增加植物生长和土壤肥力的最佳策略。在可持续农业中,这些微生物为农作物带来了显着的好处。除了定居植物系统(附生植物,内生和根磷酸盐)外,有益的微生物在周围生态系统的养分中发挥了关键作用。微生物,尤其是真菌,在植物中也起保护功能,增强防御系统的反应,并在与土壤铁的效率或磷酸化溶解度有关的情况下发挥关键作用。与植物相关的微生物都可以促进植物的生长,而不论天然和极端条件如何。最常用的促进生长微生物的策略是氮固定,生长激素,铁载体,HCN,各种水解酶的产生以及钾,锌和磷的溶解度。对生物肥料的研究已经广泛且可用,证明了这些微生物如何为农作物提供足够的营养物质以提高产量。本综述详细介绍了PGPR作用的直接和间接机制及其在植物生长和耐药性中的相互作用。
摘要:有益的微生物对于改善各种压力下的作物适应和生长至关重要。它们可以增强养分的吸收,改善植物免疫反应,并帮助植物耐受应激,例如干旱,盐度和热量。任何农作物的产量潜力都受到其相关微生物组的影响以及它们在不同的压力环境下改善生长的潜力。因此,了解植物 - 微生物相互作用的机制至关重要和令人兴奋。玉米(Zea Mays L.)除了小麦和米饭外,是全球主要的主食之一。玉米在全球范围内也是一种工业作物,占其用于饲料,淀粉和生物燃料行业的生产的83%。玉米需要显着的氮肥才能实现最佳生长和产量。玉米植物非常容易受到热,盐度和干旱胁迫,并且需要创新的方法来减轻环境压力的有害影响并减少化学肥料的使用。本综述总结了我们当前对玉米植物与特定微生物之间的利益相互作用的理解。这些有益的微生物提高了植物对压力和提高生产率的弹性。例如,它们调节电子传输,下调过氧化氢酶和上调抗氧化剂。我们还回顾了植物生长促进根瘤菌(PGPR)在增强玉米胁迫耐受性方面的作用。此外,我们还探讨了这些微生物在玉米生产中的应用,并确定了需要解决的主要知识差距,以充分利用有益的微生物的潜力。
玉米(Zea Mays)是印度的第三大谷物作物,它是至少30%人口的主要食物来源,在全球占有9亿贫困人口。不断增长的人口导致对玉米谷物的需求不断增长。然而,玉米种植面临着各种环境因素,包括生物胁迫和非生物胁迫,面临着显着的挑战。非生物压力,例如盐度,极端温度和干旱,以及细菌,真菌和病毒感染等生物因素,在全球范围内大大降低了玉米生产和谷物质量。这些应力之间的相互作用很复杂;例如,非生物压力会增强植物对病原体的敏感性,而过多的害虫可以加剧该植物对环境压力的反应。鉴于这些相互作用的复杂性,综合研究对于了解生物和非生物应力的同时存在如何影响作物生产力至关重要。尽管这个问题很重要,但缺乏有关这些压力组合如何影响玉米在关键农业地区中的全面数据。本综述着重于开发耐酸性应激的玉米品种,这对于将来保持农作物产量至关重要。一种有前途的方法涉及使用植物生长促进性根瘤菌(PGPR),土壤细菌,将根际定居并与植物组织相互作用。科学家越来越多地探索微生物策略,以增强玉米对生物和非生物胁迫的抵抗力。在整个培养过程中,害虫和微生物对玉米构成了显着威胁,从而减少了谷物的数量和质量。在导致玉米降解的各种因素中,昆虫最为普遍,其次是真菌感染。
常规化学耕作正在面临降低或增加成本,或两者兼有[1-4]。在同一土地上重复的养殖单一培养物,例如大米,小麦和棉花等,导致表土,土壤活力,地下水纯度和有益的微生物的耗尽。它终于使作物植物容易受到寄生虫和病原体的影响。化学肥料和农药受到的环境污染在全球范围内构成严重威胁。他们的连续使用可能会破坏有益的土壤微菌群[5-7]。亚硝胺氮肥的转化产物是危险的生态毒药。从施加植物毒性,诱变和致癌作用的硝基胺对植物,动物和人类的作用[8,9]。密集使用无机化学肥料和农药,导致土壤,地面和地下水污染有害化学物质以及重金属的积累[10,11]。通过植物对CD,Cu,Mn和Zn等重金属的吸收与土壤污染水平的增加成比例[12]。 食用这些植物产品的人面临不良健康影响的风险。 镉和铅是主要关注的要素,因为它们在动植物中的积累潜力和毒性作用[13]。 作物,例如菠菜,生菜,胡萝卜,萝卜和西葫芦,可以在组织中积聚重金属[14-19]。 根际含有多种微生物,对作物生产力有益。 Ayansina和oso6)[1]通常使用除草剂阿atrazine和metolachlor降低了土壤的微生物计数。通过植物对CD,Cu,Mn和Zn等重金属的吸收与土壤污染水平的增加成比例[12]。食用这些植物产品的人面临不良健康影响的风险。镉和铅是主要关注的要素,因为它们在动植物中的积累潜力和毒性作用[13]。作物,例如菠菜,生菜,胡萝卜,萝卜和西葫芦,可以在组织中积聚重金属[14-19]。根际含有多种微生物,对作物生产力有益。Ayansina和oso6)[1]通常使用除草剂阿atrazine和metolachlor降低了土壤的微生物计数。促进根瘤菌(PGPR),菌根和蓝细菌的植物生长可促进植物生长,并保护它们免受病原体的影响[20]。增加农作物的生产成本导致印度农民的自杀。稻草,棉花和辣椒等商业作物的单一培养物对生物多样性构成了威胁,并增加了入侵病原体的范围[图1-3]。
理论总讲座:60学分:4目标:本课程的目的是介绍和启发学生微生物的作用及其在工业生物技术,生物转化,生物转化,产品恢复,生物烯基产生,生物烯基产生以及各种环境过程中的生物技术应用中的作用及其在各种生物技术应用中的作用。纸质设置和考官的说明:问卷将有四个部分。审查员将共同设置九个问题,其中包括每个单元中的两个问题,以及一个涵盖整个教学大纲的简短答案类型的强制性问题。学生将尝试每个单位和强制性问题。除非指定,否则所有问题都可能带有相等的分数。生物修复中的微生物:异种生物的降解,矿物质恢复,从水性播放的第4单元(RNAi)(15小时)RNAi(15小时)RNAi及其在沉默基因中的应用,耐药性,治疗性,治疗性,治疗学和主机相互作用的病原体智力财产patents,copymarks单元1(微生物生物技术及其应用)(15小时)微生物生物技术学:范围及其在人类治疗学中的应用,农业(生物肥料,PGPR,霉菌,菌根),环境和食品技术的应用和真核微生物的应用:生物核心的应用程序:药物产业中的酵母治疗和工业生物技术重组微生物生产过程 - 链蛋白酶酶,重组疫苗(乙型肝炎B疫苗)微生物多糖和多糖和多植物,微生物的微生物生产,生物塑料 - 基于生物塑料的基于微生物生物体的生物型(15小时)(15小时)(15小时)(15小时)(15小时(15次)(15级化)类固醇和固醇生物催化过程及其工业应用:高果糖糖浆的生产以及可可脂的生产微生物替代品及其恢复微生物产品纯化:过滤,离子交换和亲和力色谱技术固定方法及其应用:全细胞的3(整个细胞)和环境3(Microbilization Bio-Envirencation and Bio-Envoriction and Bio-eth)Bio-eth bio-eth bio-Energy((生物柴油生产:木质纤维素废物和藻类生物量的商业生产,沼气生产:使用微生物培养的甲烷和氢生产。