CRISPR/Cas9系统作为一种高效的基因编辑工具,被广泛应用于研究和调控药用植物有效成分的生物合成途径,在提高药用植物有效成分的产量和质量方面具有巨大的潜力。通过精准调控关键酶和转录因子的表达,CRISPR技术不仅加深了我们对药用植物次生代谢途径的认识,也为药物研发和中药现代化开辟了新的途径。本文首先介绍了CRISPR技术的原理及其在基因编辑中的应用,然后详细讨论了其在药用植物次生代谢中的应用,包括有效成分的组成和CRISPR策略在代谢途径中的实施,以及Cas9蛋白变体和先进的CRISPR系统在该领域的影响。此外,本文还展望了CRISPR技术对药用植物研发进程的长远影响,并提出了目前研究中存在的问题,包括脱靶效应、基因组结构复杂、转化效率低、对代谢途径了解不足等,同时提出了一些见解,以期为CRISPR在药用植物中的后续应用提供新思路。总之,CRISPR技术在药用植物次生代谢研究中具有广阔的应用前景,有望促进生物医药和农业科学的进一步发展。随着技术进步和挑战的逐步解决,CRISPR技术有望在药用植物有效成分研究中发挥越来越重要的作用。
许多自闭症谱系障碍(ASD)的儿童也患有注意力/多动症(ADHD)。ADHD与负面结果的风险增加有关,并且早期干预至关重要。当前的指南建议进行社会心理干预措施,例如行为训练,例如在管理或没有ASD的儿童中管理多动症症状的第一个治疗方法。如果症状对这些干预措施产生难治性,则建议使用刺激剂,2-肾上腺素能激动剂抑制剂,选择性去甲肾上腺素再摄取抑制剂和第二代抗精神病药。但是,这些药物治疗没有在学龄前儿童中使用的监管批准,并且证据证明了该人群的安全性和效率在历史上非常有限。自2020年发布当前指南以来,已经发表了一些新的随机对照试验和现实世界的研究,这些试验已经调查了这些药物在患有ADHD的学前班儿童中的效率和耐受性,有或没有合并症ASD。在这里,我们对这些研究的关键发现进行了综述,该研究表明,越来越多的证据支持在患有ASD合并症的学龄前儿童中使用药理学干预措施。
版权页 版权所有 2021 国际药学联合会 (FIP) 国际药学联合会 (FIP) Andries Bickerweg 5 2517 JP 海牙 荷兰 www.fip.org 保留所有权利。 未经引用出处,不得将本出版物的任何部分存储在任何检索系统中或以任何形式或手段(电子、机械、录音或其他方式)转录。 FIP 对因使用本报告中的任何数据和信息而造成的任何损害不承担任何责任。已采取一切措施确保本报告中提供的数据和信息的准确性。 作者: Matthew Hung(FIP 实践发展项目助理) Victoria Chinwendu Ezeudensi(FIP 志愿者,尼日利亚) Gonçalo Sousa Pinto(FIP 实践发展和转型负责人) 本工具包包含来自 FIP 社区和医院药房部门的多项贡献,并在致谢部分列出。编辑:Gonçalo Sousa Pinto(FIP 实践发展与转型负责人)Matthew Hung(FIP 实践发展项目助理)Catherine Duggan(FIP 首席执行官)推荐引用:国际药学联合会 (FIP)。药物协调:药剂师工具包。海牙:国际药学联合会;2021 封面图片:© Tero Vesalainen | shutterstock.com
迫切需要发现治疗 COVID-19(由 SARS-CoV-2 病毒引起的流行病)的方法。考虑到发现、开发和临床测试的时间表,从库筛选开始的标准小分子药物发现工作流程是不切实际的。为了加快患者测试的时间,我们在此探索了在临床环境中经过一定程度测试的小分子药物(包括已批准的药物)作为 COVID-19 的可能治疗干预措施的治疗潜力。我们这个过程的动机是一个称为多药理学的概念,即可能具有治疗潜力的脱靶相互作用。在这项工作中,我们使用了深度学习药物设计平台 Ligand Design 来查询获得联邦批准或正在进行临床试验的内部小分子药物集合的多药理学概况,目的是识别预计会调节与 COVID-19 治疗相关的靶标的分子。我们努力的成果是 PolypharmDB,这是一种药物资源,以及它们在人类蛋白质组中预测的蛋白质靶标结合。挖掘 PolypharmDB 产生了预测与 COVID-19 的人类和病毒药物靶标相互作用的分子,包括与病毒进入和增殖相关的宿主蛋白以及与病毒生命周期相关的关键病毒蛋白。此外,我们收集了针对两个特定宿主靶标 TMPRSS2 和组织蛋白酶 B 的优先批准药物集合,最近显示它们的联合抑制可以阻止 SARS-CoV-2 病毒进入宿主细胞。总体而言,我们证明了我们的方法有助于快速响应,确定了 30 种优先候选药物,用于测试它们可能用作抗 COVID 药物。使用 PolypharmDB 资源,可以在一个工作日内为新发现的靶标确定重新利用的候选药物。我们正在免费向合作伙伴提供我们确定的分子的完整列表,以便合作伙伴能够对它们的功效进行体外和/或临床测试。关键词:SARS-CoV-2 病毒、COVID-19、冠状病毒、TMPRSS2、组织蛋白酶 B、宿主-靶标、多药理学、脱靶相互作用 缩写:SARS-CoV-2:严重急性呼吸综合征相关冠状病毒 COVID-19:冠状病毒病-2019 3CLpro:木瓜蛋白酶样蛋白酶 PLpro:主要蛋白酶 RdRp:非结构蛋白 ACE2:血管紧张素转换酶 2 TMPRSS2:跨膜蛋白酶丝氨酸 2
a 瑞士洛桑大学医院和洛桑大学精神神经科学中心药物遗传学和临床精神药理学部;b 瑞士洛桑大学医院和洛桑大学临床药学研究与创新中心;c 瑞士日内瓦大学药学院;d 瑞士日内瓦大学瑞士西部药学研究所;e 瑞士日内瓦洛桑大学瑞士西部药学研究所;f 德国曼海姆海德堡大学医学院中央精神卫生研究所分子神经影像学系;g 瑞士洛桑大学医院和洛桑大学精神病学系;h 意大利博尔扎诺博尔扎诺卫生服务区精神病学系;i 意大利博尔扎诺南蒂罗尔地区卫生服务中心儿童和青少年精神病学系; j INSERM CESP,团队 MOODS,服务医院-大学精神病学,巴黎萨克雷大学,勒克里姆林宫比塞特,法国; k Service Hospitalo-Universitaire de Psychiatrie,H ^ opital Bic ^ etre,Assistance Publique H ^ opitaux de Paris,Le Kremlin Bic ^ etre,法国; l 瑞典斯德哥尔摩卡罗林斯卡医学院检验医学系临床药理学部; m 东部州立医院,肯塔基大学心理健康研究中心,美国肯塔基州列克星敦;德国波恩联邦医疗产品研究所; o 伦敦国王学院和 MRC 伦敦医学科学研究所 (LMS)-帝国理工学院,英国伦敦; p 韩国首尔国立大学自然科学学院脑与认知科学系;q 韩国首尔国立大学医学院精神病学系;r 奥地利维也纳医科大学精神病学和心理治疗学系;s 加拿大多伦多大学坎贝尔家庭心理健康研究所、CAMH 和精神病学系;t 德国图宾根大学精神病学和心理治疗学系;u 荷兰阿森威廉敏娜医院临床药学系;v 荷兰阿森 GGZ 德伦特精神卫生服务中心;w 荷兰格罗宁根大学药学和制药科学系药物治疗学、流行病学和经济学系;x 荷兰格罗宁根大学精神病理学和情绪调节跨学科中心精神病学系; y 加拿大安大略省多伦多市成瘾与心理健康中心坎贝尔家庭心理健康研究所;z 加拿大安大略省多伦多大学精神病学系加拿大;aa 多伦多大学药理学和毒理学系,加拿大安大略省多伦多;ab 林茨大学生物医学和临床科学系,林茨大学,瑞典;ac 斯科讷大学医院临床化学和药理学,瑞典隆德;ad 西乌尔茨堡大学医院精神卫生中心、精神病学、心身疾病和心理治疗诊所和综合诊所,西乌尔茨堡,德国;ae 南丹麦奥登塞大学精神病学系,丹麦奥登塞;af 拉德布德大学精神病学系,奈梅亨,荷兰;ag 拉德布德大学 Donders 大脑、认知和行为研究所,奈梅亨,荷兰;ah 圣奥拉夫大学医院临床药理学系,挪威特隆赫姆;ai 挪威科技大学临床和分子医学系,挪威特隆赫姆; aj 意大利墨西拿大学临床与实验医学系;ak 德国雷根斯堡大学药学研究所;al 德国慕尼黑工业大学临床化学与病理生物化学研究所;am 德国亚琛工业大学医院临床药理学研究所;an 土耳其安卡拉大学药学院毒理学系;ao 日本东京新宿区庆应义塾大学医学院神经精神病学系;ap 德国西乌尔茨堡大学医院精神病学、心身医学和心理治疗系;aq 德国美因茨大学医学中心精神病学和心理治疗系土耳其;ao 日本东京新宿区庆应义塾大学医学院神经精神病学系;ap 德国西乌尔茨堡大学医院精神病学、心身医学和心理治疗学系;aq 德国美因茨大学医学中心精神病学和心理治疗学系土耳其;ao 日本东京新宿区庆应义塾大学医学院神经精神病学系;ap 德国西乌尔茨堡大学医院精神病学、心身医学和心理治疗学系;aq 德国美因茨大学医学中心精神病学和心理治疗学系
经常将产品用于核对毒理学和输注稳定性研究▪临床前安全研究:范围发现,毒理学,生物分布▪CGMP制造:QC/QA释放-COA,COA,CMC,IND IND提交▪实时稳定性:实时稳定性:将检测释放分析的子集,将检测DECTECTECTECT DECTECTICT和DIVARDATION和
摘要:叶酸受体-α(FR-α)在许多上皮癌中过度表达,包括卵巢癌、子宫癌、肾癌、乳腺癌、肺癌、结肠癌和前列腺癌,但在肾脏、唾液腺、脉络丛和胎盘等正常组织中表达有限。因此,FR-α已成为向FR阳性肿瘤输送治疗剂和成像剂的有希望的靶点。已经开发了一系列基于叶酸的PET(正电子发射断层扫描)放射性药物,用于选择性靶向FR阳性恶性肿瘤。本综述概述了迄今为止关于叶酸衍生的PET放射性结合物的设计、放射合成和用于靶向FR阳性肿瘤的效用的研究进展。本文主要介绍了用氟-18(t 1 / 2 = 109.8 分钟)和镓-68(t 1 / 2 = 67.7 分钟)标记的叶酸放射性结合物的结果,但也讨论了用“外来”和新 PET 放射性核素标记的叶酸,例如铜-64(t 1 / 2 = 12.7 小时)、铽-152(t 1 / 2 = 17.5 小时)、钪-44(t 1 / 2 = 3.97 小时)、钴-55(t 1 / 2 = 17.5 小时)和锆-89(t 1 / 2 = 78.4 小时)。对于肿瘤成像,迄今为止报道的 PET 放射性标记叶酸中,除了 [ 18 F]AzaFol 之外,没有一种完成了从实验室到临床的旅程,该药物在一项多中心首次人体试验中成功用于转移性卵巢癌和肺癌患者。然而,在不久的将来,我们预计会有更多基于叶酸的 PET 放射性药物的临床试验,因为临床对成像和 FR 相关恶性肿瘤的治疗越来越感兴趣。
摘要 医疗器械代表了一类广泛的产品,旨在用于预防、诊断、监测、治疗或缓解疾病或损伤。近年来,医疗器械的发展已导致越来越多的产品含有“物质”,由于其存在形式和使用部位与药品相似,通常被称为“边缘”产品。欧盟 (EU) 的监管文件在许多监管领域都考虑了基于物质的产品;在治疗学中,他们根据产品的主要作用机制将“医疗器械”与“药品”区分开来。这种区别通常不是直观的,而是基于对“药理、免疫和代谢作用机制”等基本术语的正确解释,这些术语具有重要的监管意义。本文讨论了正确解释这些术语的问题,并希望引起药理学家的兴趣,设计适当的实验范例,以严格、科学地解释由物质制成的医疗器械的正确作用机制。
在动态行业的跳动心中,我们建立了更多的联系,并且在批判性地使它们计算。从扩大我们的“进入”活动和会议到发展在线社区并提供支持数据的营销解决方案,我们通过突破机会,可持续性和增长的界限来激活更多潜力。
