识别与治疗反应和治疗性变化的假定机制相关的个体差异因素可能会改善对强迫症(OCD)的治疗。我们对心理疗法的结构神经影像学标记(即形态计量学,结构连通性)和OCD的药物治疗反应的系统综述26符合条件的出版物(平均研究总计n = 54±41.6 [范围:11-175] [范围:11-175]; OCD组n = 29±19±19±19),以及成人的脑海中,以及成人的脑海中,成人的脑海中,成人的脑海中,适用于Adection n = 29±19)。作为与治疗相关的大脑结构变化。研究结果在整个研究中不一致。前扣带回皮层内(3/5区域,2/8全脑研究)和眶额皮层(5/10区域,2/7全脑研究)中的显着关联是最常见的,但后期性和方向性并不总是一致的。治疗反应的结构性神经影像学标记当前不具有临床实用性。给出越来越多的证据表明,复杂行为与大脑结构之间的关联的特征是小但有意义的效果,可能需要更大的样本。多元方法(例如机器学习)也可以改善神经影像数据的临床预测效用。
抑郁症是造成残疾和自杀的最大贡献者之一,全球每年约有80万自杀(1)。在十年中,抑郁症的患病率增加了25%以上(2005-2015)(2,3)。这种增加与每年耗资数十亿美元的社会经济负担有关(4)。此外,COVID-19大流行进一步增加了病例,估计全球流行率为28%(2)。药物治疗是中度至重度抑郁症的第一线治疗方法(5)。但是,患者的显着比例未能对药物做出反应(6)。多达60%的抑郁症患者对他们的初始治疗没有反应,并且通常从第一种处方药转换为其他替代药物(6,7)。随后的治疗方法,患者具有临床阳性反应的可能性大大降低(6)。在某些个体/人群中,相同的抗抑郁药可能有效,但不具体,或者可能导致其他人的不良药物反应(ADR)(8)。因此,新策略专注于个性化抗抑郁药的处方。这是在临床实践中广泛努力的一部分,以使用精确药物技术(包括精确给药)改善患者的结果(9,10)。使用个体的基因型来帮助药物选择,称为药物基因组学,是一种有前途的方法,具有改善抑郁症治疗的潜力(9-13)。在非癌症药物中,精神病药物具有最高比例的药物,并具有FDA批准的PGX信息(17)。该领域最初被称为药物遗传学,因为它涉及单个基因或相对较少的基因的组合,但是它演变成药物基因组学(PGX),以适应整个基因组中许多基因的基因,从而影响基因相互作用(13)。有许多可用的商业PGX测试面板,包括Genesight,NeuroidGenetix,CNSDOSE,Neuropharmagen和Genecept(12)。一些面板除了提供PGX测试外,还提供与精神病药物有关的临床解释和决策支持工具(14、15)。医生可以主动为患者要求PGX测试,以指导新的药物处方,或者如果治疗失败。此外,还有监管机构(美国食品和药物管理局,FDA)和研究联盟(临床药物遗传学实施联盟,CPIC)提供了针对处方的建议和准则(12、14-16)。FDA标记了38种具有PGX预防措施的精神病药物,这些药物主要由两种主要的肝酶CYP2D6和CYP2C19代谢,分别由高度多型CYP2D6和CYP2C19基因编码(18)。然而,精神病学中PGX测试的临床使用仍然很低(19),由于许多原因,包括CYP酶反应,对药物治疗方案的依从性不佳,负面生活方式的影响(例如,烟草吸烟)以及有限的先例知识(20)。许多临床试验,荟萃分析和系统评价检查了PGX引导的药物选择以治疗抑郁症的效率和安全性。例如,Han等人。(24),报道了PGX指导治疗导致了A大多数研究发现,PGX引导的抗抑郁药处方优于治疗方法(处方不考虑PGX测试结果(21 - 24)。
摘要:叶酸受体-α(FR-α)在许多上皮癌中过度表达,包括卵巢癌、子宫癌、肾癌、乳腺癌、肺癌、结肠癌和前列腺癌,但在肾脏、唾液腺、脉络丛和胎盘等正常组织中表达有限。因此,FR-α已成为向FR阳性肿瘤输送治疗剂和成像剂的有希望的靶点。已经开发了一系列基于叶酸的PET(正电子发射断层扫描)放射性药物,用于选择性靶向FR阳性恶性肿瘤。本综述概述了迄今为止关于叶酸衍生的PET放射性结合物的设计、放射合成和用于靶向FR阳性肿瘤的效用的研究进展。本文主要介绍了用氟-18(t 1 / 2 = 109.8 分钟)和镓-68(t 1 / 2 = 67.7 分钟)标记的叶酸放射性结合物的结果,但也讨论了用“外来”和新 PET 放射性核素标记的叶酸,例如铜-64(t 1 / 2 = 12.7 小时)、铽-152(t 1 / 2 = 17.5 小时)、钪-44(t 1 / 2 = 3.97 小时)、钴-55(t 1 / 2 = 17.5 小时)和锆-89(t 1 / 2 = 78.4 小时)。对于肿瘤成像,迄今为止报道的 PET 放射性标记叶酸中,除了 [ 18 F]AzaFol 之外,没有一种完成了从实验室到临床的旅程,该药物在一项多中心首次人体试验中成功用于转移性卵巢癌和肺癌患者。然而,在不久的将来,我们预计会有更多基于叶酸的 PET 放射性药物的临床试验,因为临床对成像和 FR 相关恶性肿瘤的治疗越来越感兴趣。
摘要 医疗器械代表了一类广泛的产品,旨在用于预防、诊断、监测、治疗或缓解疾病或损伤。近年来,医疗器械的发展已导致越来越多的产品含有“物质”,由于其存在形式和使用部位与药品相似,通常被称为“边缘”产品。欧盟 (EU) 的监管文件在许多监管领域都考虑了基于物质的产品;在治疗学中,他们根据产品的主要作用机制将“医疗器械”与“药品”区分开来。这种区别通常不是直观的,而是基于对“药理、免疫和代谢作用机制”等基本术语的正确解释,这些术语具有重要的监管意义。本文讨论了正确解释这些术语的问题,并希望引起药理学家的兴趣,设计适当的实验范例,以严格、科学地解释由物质制成的医疗器械的正确作用机制。
经常将产品用于核对毒理学和输注稳定性研究▪临床前安全研究:范围发现,毒理学,生物分布▪CGMP制造:QC/QA释放-COA,COA,CMC,IND IND提交▪实时稳定性:实时稳定性:将检测释放分析的子集,将检测DECTECTECTECT DECTECTICT和DIVARDATION和
a 瑞士洛桑大学医院和洛桑大学精神神经科学中心药物遗传学和临床精神药理学部;b 瑞士洛桑大学医院和洛桑大学临床药学研究与创新中心;c 瑞士日内瓦大学药学院;d 瑞士日内瓦大学瑞士西部药学研究所;e 瑞士日内瓦洛桑大学瑞士西部药学研究所;f 德国曼海姆海德堡大学医学院中央精神卫生研究所分子神经影像学系;g 瑞士洛桑大学医院和洛桑大学精神病学系;h 意大利博尔扎诺博尔扎诺卫生服务区精神病学系;i 意大利博尔扎诺南蒂罗尔地区卫生服务中心儿童和青少年精神病学系; j INSERM CESP,团队 MOODS,服务医院-大学精神病学,巴黎萨克雷大学,勒克里姆林宫比塞特,法国; k Service Hospitalo-Universitaire de Psychiatrie,H ^ opital Bic ^ etre,Assistance Publique H ^ opitaux de Paris,Le Kremlin Bic ^ etre,法国; l 瑞典斯德哥尔摩卡罗林斯卡医学院检验医学系临床药理学部; m 东部州立医院,肯塔基大学心理健康研究中心,美国肯塔基州列克星敦;德国波恩联邦医疗产品研究所; o 伦敦国王学院和 MRC 伦敦医学科学研究所 (LMS)-帝国理工学院,英国伦敦; p 韩国首尔国立大学自然科学学院脑与认知科学系;q 韩国首尔国立大学医学院精神病学系;r 奥地利维也纳医科大学精神病学和心理治疗学系;s 加拿大多伦多大学坎贝尔家庭心理健康研究所、CAMH 和精神病学系;t 德国图宾根大学精神病学和心理治疗学系;u 荷兰阿森威廉敏娜医院临床药学系;v 荷兰阿森 GGZ 德伦特精神卫生服务中心;w 荷兰格罗宁根大学药学和制药科学系药物治疗学、流行病学和经济学系;x 荷兰格罗宁根大学精神病理学和情绪调节跨学科中心精神病学系; y 加拿大安大略省多伦多市成瘾与心理健康中心坎贝尔家庭心理健康研究所;z 加拿大安大略省多伦多大学精神病学系加拿大;aa 多伦多大学药理学和毒理学系,加拿大安大略省多伦多;ab 林茨大学生物医学和临床科学系,林茨大学,瑞典;ac 斯科讷大学医院临床化学和药理学,瑞典隆德;ad 西乌尔茨堡大学医院精神卫生中心、精神病学、心身疾病和心理治疗诊所和综合诊所,西乌尔茨堡,德国;ae 南丹麦奥登塞大学精神病学系,丹麦奥登塞;af 拉德布德大学精神病学系,奈梅亨,荷兰;ag 拉德布德大学 Donders 大脑、认知和行为研究所,奈梅亨,荷兰;ah 圣奥拉夫大学医院临床药理学系,挪威特隆赫姆;ai 挪威科技大学临床和分子医学系,挪威特隆赫姆; aj 意大利墨西拿大学临床与实验医学系;ak 德国雷根斯堡大学药学研究所;al 德国慕尼黑工业大学临床化学与病理生物化学研究所;am 德国亚琛工业大学医院临床药理学研究所;an 土耳其安卡拉大学药学院毒理学系;ao 日本东京新宿区庆应义塾大学医学院神经精神病学系;ap 德国西乌尔茨堡大学医院精神病学、心身医学和心理治疗系;aq 德国美因茨大学医学中心精神病学和心理治疗系土耳其;ao 日本东京新宿区庆应义塾大学医学院神经精神病学系;ap 德国西乌尔茨堡大学医院精神病学、心身医学和心理治疗学系;aq 德国美因茨大学医学中心精神病学和心理治疗学系土耳其;ao 日本东京新宿区庆应义塾大学医学院神经精神病学系;ap 德国西乌尔茨堡大学医院精神病学、心身医学和心理治疗学系;aq 德国美因茨大学医学中心精神病学和心理治疗学系
版权页 版权所有 2021 国际药学联合会 (FIP) 国际药学联合会 (FIP) Andries Bickerweg 5 2517 JP 海牙 荷兰 www.fip.org 保留所有权利。 未经引用出处,不得将本出版物的任何部分存储在任何检索系统中或以任何形式或手段(电子、机械、录音或其他方式)转录。 FIP 对因使用本报告中的任何数据和信息而造成的任何损害不承担任何责任。已采取一切措施确保本报告中提供的数据和信息的准确性。 作者: Matthew Hung(FIP 实践发展项目助理) Victoria Chinwendu Ezeudensi(FIP 志愿者,尼日利亚) Gonçalo Sousa Pinto(FIP 实践发展和转型负责人) 本工具包包含来自 FIP 社区和医院药房部门的多项贡献,并在致谢部分列出。编辑:Gonçalo Sousa Pinto(FIP 实践发展与转型负责人)Matthew Hung(FIP 实践发展项目助理)Catherine Duggan(FIP 首席执行官)推荐引用:国际药学联合会 (FIP)。药物协调:药剂师工具包。海牙:国际药学联合会;2021 封面图片:© Tero Vesalainen | shutterstock.com
T-01(PG)主持人标题:主持人姓名:伯大尼蒙哥马利系:药房大学:贝尔法斯特皇后大学贝尔法斯特联系电子邮件:bmontgomery05@qub.ac.ac.uk合着者和分支机构:Lisa E. J. J. Douglas,Qub; S. Lorraine Martin,Qub。会议主题:药学教育中的AI摘要标题:高度选择性的FURIN抑制对基质金属蛋白酶在囊性纤维化中的影响。摘要文本简介:囊性纤维化(CF)是一种慢性气道疾病,其特征是感染和中性粒细胞炎症的慢性循环,导致与异常基质金属蛋白酶(MMP)表达相关的肺组织损伤。MMP还调节细胞因子活性,该活性在炎症和免疫反应中起关键作用。普遍表达的普洛蛋白转化酶,FURIN可以裂解并激活各种疾病的底物,以包括几个MMP [1]。这项研究的目的是研究新型,高度选择性的脂蛋白抑制剂BOS-857是否会调节下游MMP活性。
药物化合物已成为废水中越来越重要的污染物来源,因为它是传统的处理方法无效地去除它们的方法,因此它们通常被放入环境中。可以使用液体液体提取成功去除药物,并且可以使用宇宙RS预测相互作用并识别最有前途的溶剂。但是,COSMO热模型无法解释关键过程参数,从而降低了这些计算模型的准确性。因此,需要替代计算方法来准确预测可以纳入处理和相互作用变量的药物的提取产率。这项工作使用机器学习来预测使用八种溶剂的11种药物的提取产率。探索了六个回归模型和两个分类模型。使用ANN回归器(测试MAE:4.510,测试R 2:0.884)和RF分类器(测试精度:0.938,测试召回:0.974)获得了最佳性能。RF回归分析和分类还显示了关键的提取产率特征:溶剂与喂养比,N - 辛烷 - 水分系数,氢键,氢键和范德华对多余的焓的贡献,以及pH距离至最近的PKA。机器学习显示为筛选和选择最有希望的溶剂和过程条件的绝佳工具,以从废水中去除药物。
背景和背景:抗体-药物偶联物 (ADC) 是一类很有前途的靶向癌症疗法,它结合了单克隆抗体的特异性和化疗药物的细胞毒性。ADC 在将药物直接输送到癌细胞的同时,还显示出了巨大的潜力,可以最大限度地减少脱靶效应。然而,在临床环境中预测 ADC 的疗效和毒性仍然是一项重大挑战。经验模型通常无法准确捕捉与这些生物治疗相关的复杂药代动力学和药效学 (PKPD)。