研究以定量结构性质关系(QSPR)分析为中心,重点是各种图能量,研究了诸如Me-氯喹酮,Sertraline,Sertraline,Niclosamide,Tizoxanide,Pha-690509,Irricasan,Emricasan,Emricasan和Sofosbuvir等药物。采用计算建模技术,旨在发现这些药物的化学结构及其独特特性之间的相关性。结果阐明了结构特征和药理学特征之间的定量关系,从而提高了我们的预测能力。这项研究显着,通过对这些药用化合物的结构质质连接提供基本见解,从而有助于药物发现和设计。值得注意的是,某些基于光谱的描述符,例如正惯性能,邻接能量,算术几何能,第一个Zegrab能量和谐波指数,表现出高于0.999的强相关系数。相反,众所周知的描述符,例如扩展的邻接,拉普拉斯和无价的拉普拉斯光谱半径,以及第一个和第二个Zagreb estrada指数的性能较弱。文章强调了图形能量和线性回归模型的应用,以有效预测药理特征,通过阐明分子结构与药理特征之间的关系来有效地增强药物发现过程并帮助有针对性的药物设计。
人类MHC-I分子(通常称为HLA)在抗原呈递T细胞和肿瘤免疫逃生中起着至关重要的作用(6)。以前的研究强调了各种癌症类型的MHC-I表达与患者预后之间存在正相关(7)。相反,MHC-I的下调与疾病的进展和不良预后有关,例如乳腺癌(8),结肠癌(9),Hodgkin淋巴瘤(10),非小细胞肺癌(11)和Bladder Carcinomas(12)。重要的是,降低的MHC-I表达与对免疫检查 - 点治疗(ICT)的抗性有关(13),其中治疗功效依赖于识别MHC-I在肿瘤细胞表面上识别的胞质抗原的细胞毒性T细胞(14,15)。各种策略恶性细胞用于颠覆免疫监视,这强调了确定能够克服这些逃避机制的有效小分子的关键需求。事实证明,免疫检查点阻塞是阻碍免疫监视的关键治疗策略,但重点主要集中在抗体上。针对程序性细胞死亡1/促进的细胞死亡配体1(PD-1/ PD-L1)功能的小分子也出现并进入了临床试验。,对特异性调节MHC-I表达的分子的研究相对有限。值得注意的是,先前的观察结果表明,用
在这项系统综述和组件网络荟萃分析(NMA)中,我们搜索了多个数据库,以研究已发表的和未发表的随机对照试验(RCTS)研究了来自数据库启动至2023年9月6日的成人的药理和非药理干预措施的ADHD。我们包括了来自RCT的汇总数据,将干预措施与对照组或任何其他合格的主动干预进行了比较,以治疗成人(≥18岁)的症状与ADHD的正式诊断。根据国际准则,将其最高计划的剂量视为符合条件的情况,才包括药理学疗法。我们包括至少1周的药物持续时间的RCT,至少四个用于心理疗法的课程以及任何被认为适合神经刺激的长度。仅用于药物,认知训练或神经刺激的RCT,我们仅包括双盲RCT。至少有两位作者独立筛选了已确定的记录和从合格的RCT中提取数据。我们的主要结果是功效(在最接近12周的时间点上,ADHD核心症状严重程度的变化)和可接受性(全因中断)。我们使用成对的随机效果和组件NMA估计标准化的平均差异(SMD)和优势比(ORS),将干预措施拆除为特定的治疗成分。这项研究已在Prospero(CRD42021265576)注册。具有相关生活经验的人参与了研究和写作过程的行为。
摘要:已经证明了中枢和周围炎症参与主要抑郁症(MDD)的发病和预后。抑郁症患者中促炎细胞因子(介体(IL)-1β,IL-6,IL-18和TNF-α)的增加可能会引起神经炎症过程和周围炎症,而这些机制,这些机制又可能有助于GUT Microbobobiota Dysbibiosis。一起,神经炎症和肠道营养不良会诱导色氨酸代谢的改变,最终导致5-羟色胺合成,神经可塑性相关机制的障碍以及谷氨酸介导的介导的兴奋性。本综述旨在强调涉及MDD病理生理学的炎症机制(神经炎症,周围炎症和肠道营养不良),并探索这种精神疾病的新型抗炎治疗方法。几条证据表明,除了抗抑郁药,体育锻炼,益生菌和营养素(agmatine,抗坏血酸和维生素D)外,还具有抗炎作用,可能有助于其抗抑郁剂。对于探索这些替代疗法对MDD的治疗益处的进一步研究是必要的。
摘要:乳腺癌是全球女性癌症死亡最常见的原因之一。特别是三阴性乳腺癌(TNBC)代表了最具侵略性的乳腺癌亚型,因为它的特征是没有分子靶标,因此使其成为孤儿的恶性肿瘤类型。必须发现新分子可药靶标的是提高治疗成功。在这种情况下,非编码RNA代表了调节癌症的机会。它们是显然没有蛋白质编码潜力的RNA分子,已经证明已经在细胞中发挥关键作用,参与了不同过程,例如增殖,细胞周期调节,凋亡,迁移,迁移和疾病,包括癌症。可以肯定的是,它们可以用作未来TNBC个性化疗法的靶标。此外,非编码RNA的独特特征使它们成为可靠的生物标志物来监测癌症治疗,从而监测复发或化学抗性,这是TNBC中最具挑战性的方面。在本综述中,我们专注于长期非编码RNA(LNCRNA)和循环RNA和圆形RNA(CIRCRNA)的致癌或造成抑制作用的作用,主要参与TNBC,强调了它们的作用方式,并将其潜在的作用描述为潜在的生物标志物和/或针对新的非编码RNNA-NORDECED READICTRICTICTICTRAICT。
加拿大类风湿性关节炎 (RA) 患者的药物治疗。方法。加拿大风湿病协会 (CRA) 成立了一个由风湿病学家、研究人员、方法学家和患者组成的多学科小组。在我们制定的第一版生活指南中,该小组使用 GRADE(建议分级评估、制定和评估)方法制定了一项建议,建议在持续缓解的患者中逐渐减少生物和靶向合成的抗风湿药物 (b/ts DMARD) 治疗,包括为加拿大 RA 人群制定的健康公平框架。该建议改编自澳大利亚和新西兰肌肉骨骼临床试验网络的生活指南。结果。对于持续低疾病活动度或缓解至少 6 个月的 RA 患者,我们建议在共同决策的背景下逐步减少 b/tsDMARD 剂量而不停药,前提是患者能够快速获得风湿病治疗并在需要时重新开始用药。对于难以快速获得治疗或重新开始用药的患者,我们有条件地建议不要逐渐减少剂量。开发了患者决策辅助工具来补充该建议。结论。本生活指南将为加拿大实践提供当代 RA 管理建议。新的建议将随着时间的推移而添加和更新,最新的建议、证据摘要和决策证据摘要可通过 CRA 网站 (www.rheum.ca) 获得。
。cc-by-nc-nd 4.0国际许可证(未获得同行评审证书)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本于2024年8月28日发布。 https://doi.org/10.1101/2024.06.08.598059 doi:biorxiv preprint
在这项系统的审查和网络荟萃分析中,我们搜索了Cochrane Central在对照试验中,Medline,PubMed,PubMed,Embase,Psycinfo,Psycinfo,他是国际临床试验注册平台,临床检查。gov,以及从数据库成立到2021年11月25日的监管机构的网站,以确定已发表和未发表的随机对照试验。我们纳入了将药理治疗或安慰剂作为成人治疗(≥18岁)的单一治疗的研究。我们使用网络荟萃分析(Cinema)框架的信心评估了证据的确定性。主要结果是功效(即,以任何自评为量表测量的睡眠质量),由于任何原因而导致的治疗终止,并且由于副作用具体而导致的,并且安全性(即,至少有一个不良事件的患者人数)都用于急性和长期治疗。我们使用成对和网络荟萃分析估计摘要标准化平均差异(SMD)和优势比(ORS)。这项研究已在开放科学框架中注册,https://doi.org/10.17605/osf.io/pu4qj。
网络药理学是一种多靶点药物发现方法,用于探索药物与生物网络之间的相互作用。它有助于了解草药的治疗机制,特别是对于糖尿病等复杂疾病。Chandraprabha Vati 是一种经典的阿育吠陀配方,含有 37 种成分,其中许多成分具有抗糖尿病作用。本研究旨在研究 Chandraprabha Vati 的植物化学物质与抗糖尿病药物格列美脲之间的相互作用。使用 IMPPAT 选择 Chandraprabha Vati 的生物活性成分。使用 Swiss ADME 进行药代动力学预测,并使用 Way2Drug 预测药物间相互作用。使用 STRING 数据库构建蛋白质-蛋白质相互作用 (PPI),并在 Cytoscape 中进行网络分析。使用 DAVID 数据库进行基因本体和 KEGG 富集分析。药代动力学分析确定了 11 种关键植物化学物质,它们对参与格列美脲代谢的酶 CYP2C9 具有不同的影响。靶标重叠分析显示格列美脲和植物化学物质之间存在 34 个共同的枢纽基因,包括 EGFR、ESR1、PIK3CA、CYP2C9 和 SRC。这些基因与药物相互作用有关,其中 EGFR 成为关键因素。Chandraprabha Vati 中的植物化学物质,特别是 20-羟基孕-4-烯-3-酮、β-石竹烯和豆固醇,可能通过抑制 CYP2C9 与格列美脲相互作用。这可能会改变格列美脲代谢,增加不良反应的风险。需要进一步的临床研究来证实这些发现并指导安全的联合用药。
慢性非治疗糖尿病伤口(DW)对社会和个人都构成了挑战。先前的研究表明,饮食中等的槲皮素(QCT)有益于预防糖尿病并发症,包括非治疗DW。但是,很少有研究研究了针对DW的QCT相关分子机制。在本研究中,我们首先将网络药理学与分子对接和实验验证进行了研究,以研究与QCT相关的治疗靶标和治疗DW的机制。最后,从在线数据库中获得了191个与QCT相关的靶标和1750个与DW相关的致病靶标。删除重复项后,最终确定了槲皮素的90个潜在的治疗靶标。此外,预测7个具有较高程度的目标,包括IL-6,EGFR,SRC,TNF,AKT1,JUN和MMP9作为QCT的中央治疗靶标,用于治疗DW。功能富集分析表明,QCT施加了强大的多白素调节活动。此外,KEGG富集分析表明,糖尿病并发症中的几种信号通路,包括年龄板信号通路IL-17,PI3K-AKT,TNF,HIF-1,VEGF,被预测为治疗DW处理DW的QCT的关键调节剂。分子对接结果表明,QCT与预测靶标具有强大的结合活性。结合了网络药理学与实验验证,我们首次系统地研究了与DW处理的QCT相关性治疗靶标和潜在途径。此外,验证实验表明QCT可能会显着减弱炎症细胞因子的表达,并且PI3K-AKT信号传导途径的调节可能是QCT药理机制以治疗DW的重要机制。我们的研究可能为DW治疗提供理论基础。
