在这里,我们使用密度功能理论比较了具有或没有反相边界的不同III-V晶体构型的稳定性,具有或没有反相边界的阶梯式SI底物,用于突然和补偿界面。通过电荷密度分解和机械应变的原子量表描述分析了不同异质结构的热力学稳定性。我们表明,III-V晶体通过在异方面的电荷补偿更改而适应Si Monoatomic步骤的配置要比形成反相对边界的配置要稳定得多。因此,这项研究表明,在III-V/SI样品中通常观察到的反相边界不是源自Si Monootomic阶梯边缘,而是来自不可避免的动力学驱动的单相3D III-V岛的合并。
简体英语摘要背景和研究目的 DOMENICA 研究旨在评估 dostarlimab 作为一种治疗晚期/转移性子宫内膜癌的新方法的有效性,可显著降低复发几率。Dostarlimab 是一种免疫疗法(不直接针对肿瘤,但会影响免疫系统,使其能够攻击和摧毁癌细胞)。当免疫系统检测到异物(病毒、细菌等)时,它会产生抗体,抗体是一种对抗感染的蛋白质。它们可以附着在您身体的其他分子或细胞上,通过帮助您的免疫系统对抗癌症发挥作用。目前这种癌症的标准治疗方法是单独化疗(紫杉醇和卡铂)。尽管接受了化疗,但一些患者的癌症仍会进展。
无溶剂合成和加工金属有机骨架 (MOF) 对于将这些材料应用于应用技术至关重要。MOF 薄膜的气相合成特别适合此类应用,但与传统的基于溶液的方法相比具有挑战性。因此,推进和扩大 MOF 薄膜的气相合成势在必行。结晶对苯二甲酸铜 MOF 薄膜通过原子和分子层沉积 (ALD/MLD) 在不同种类的基底上以气相生长。从先驱工作扩展而来,首次清楚地证明了 3D 相的形成,并揭示了该工艺对多种基底的适应性。在 ALD/MLD 工艺的早期阶段观察到定向膜生长,导致表面上取向的 MOF 晶体,当随着 ALD/MLD 循环次数的增加而进行各向同性生长时。值得注意的是,这项研究主要展示了使用具有晶格匹配拓扑的 DMOF-1 单晶作为起始表面,在气相中实现异质外延生长。这种方法为在气相中开发 MOF 超晶格材料提供了一种有吸引力的途径。
NIH 政策通知所有申请人:会议名册仅供参考。申请研究人员和机构官员不得在审查之前或之后直接与研究部门成员就申请进行沟通。不遵守此政策将导致同行评审流程严重违反诚信,并可能导致 NOT-OD-22-044 中概述的行动,包括将申请从立即审查中移除。
在新冠疫情期间,美国的反疫苗活动转变为一场政治运动,因为对健康自由的呼吁成为党派政治活动的特征。霍兹在最近的评论文章中指出,随着新冠住院人数和死亡人数的下降,反疫苗态度并没有减少,只是转向了儿童接种疫苗。
如果没有各种薄膜涂层应用方法,现代技术将难以想象。在各种切削工具(钻头、刀具、铣床等)上沉积硬化涂层可以减少磨损并延长其使用寿命。在不同光学部件表面沉积薄膜,可以获得具有所需参数的产品。对于微电子技术来说,涂层厚度从几纳米到几十微米不等。磁控溅射目前被广泛用于涂覆各种材料的薄膜。在此过程中,靶材阴极在真空室中被工作气体的离子溅射,从而在零件上沉积薄膜涂层 [1 – 5] 。磁控溅射系统 (MSS) 的主要缺点是所生产涂层中原子的能量成本很高 [6,7]。但是,如果阴极处于液相,则可以将涂层涂覆率提高 10 倍,并将能源成本降低 1/4,同时保持涂层质量。涂层形成率与典型的真空电弧蒸发 [ 1 ] 相当。阴极材料利用率低(不高于 40%)是采用固相阴极的 MSS 的另一个缺点。采用液体阴极的 MSS 可以将材料利用率提高到几乎 100%,从而大大降低经济成本并实现无浪费生产。本研究的目的是根据从液相溅射的锡阴极的实验数据来选择加工模式并评估阴极溅射系数和放电参数。阴极溅射是使用经过改装的永磁磁控溅射系统进行的,以便
储层计算是一种植根于经常性神经网络的时间序列处理的监督机器学习方法[1,2]。受到大脑机制的启发,许多相互连接的人工神经元过程输入输入并显示内部记忆。反复的神经网络随后适合于语音识别等时间任务[3,4],但以难以训练的代价。网络的所有权重需要在时间[5]中使用反向传播进行训练,这是一种耗时的,并非总是在融合[6]。不同,在储层计算(RC)中,仅训练输出层的权重以处理信息[7,8]。这些结构是由三个元素组成的:将数据注入系统中的输入层,由随机连接的大量神经元(或节点)组成的储层,以及一个外部(或读取)层以从储层中提取信息。在储层上的某些条件下,用简单的线性回归训练输出层就足够了[1,8]。在本文中,我们使用单个非线性节点(如[9]中)提供了储层协议的设计。尽管最近的作品已通过光学频率梳子的频率组件成功实现了储层和神经形态的组合[10-12],但我们在这里利用了时间特征,即脉冲基础,光频率梳子作为储层的节点。此外,使用相干性同伴检测,因此可以在场的相分量中编码信息,而不是其强度或弹性。我们表明,尽管有少量的节点和低可线性的节点,但我们的协议具有良好的性能,同时显示非线性记忆和预测可供使。我们的系统建立在可以使用光脉冲来构建尖峰储层的概念上[13,14],并且信息注入的相位编码可以在光子储层计算机中获得更好的性能[15,16]。基于光学的计算[17]可能能够给予对电子设备的速度或能源效率。
量子力学允许通过光学方法分发本质上安全的加密密钥。双场量子密钥分发是实现长距离光纤网络的最有前途的技术之一,但需要稳定双方通信信道的光长。在基于卷轴光纤的原理验证实验中,这是通过将量子通信与周期性稳定帧交错来实现的。在这种方法中,密钥流的较长占空比是以对信道长度的控制较松为代价的,并且在现实世界中使用此技术成功传输密钥仍然是一项重大挑战。利用源自频率计量的干涉测量技术,我们开发了一种同时进行密钥流和信道长度控制的解决方案,并在 206 公里现场部署的光纤上进行了演示,损耗为 65 dB。我们的技术将信道长度变化导致的量子比特误码率降低到 <1%,代表了现实世界量子通信的有效解决方案。
Jean-FrançoisSilvain,LoïcConstantin,Jean-Marc Heintz,SylvieBordère,LionelTeulé-Gay等在液相键合中控制界面交换,可以为高功率和温度应用形成强可靠的Cu – SN焊接。ACS应用电子材料,2021,3(2),pp.921-928。10.1021/acsaelm.0c01040。hal-03153399
本文研究了德里达随机能量模型的量子版本的非平衡相图,这是最简单的平均场自旋玻璃模型。我们将其在 Fock 空间中的相应量子动力学解释为非常高维的单粒子问题,并应用针对高维晶格的不同理论方法:前向散射近似、Rosenzweig-Porter 模型映射和腔方法。我们的结果表明存在两条过渡线和三个不同的动力学相:低能下的完全多体局域相、高能下的完全遍历相和中间能下的多重分形“坏金属”相。在后者中,特征函数占据发散的体积,但在整个希尔伯特空间中呈指数级减小。我们讨论了近似的局限性以及与先前研究的关系。