摘要:钻石作为碳的最密集同质子,显示出一系列示例性的材料特性,这些特性从设备的角度来看具有吸引力。尽管钻石表现出高碳 - 碳键强度,但Ultrashort(飞秒)脉冲激光辐射可以为钻石晶格的高度局部内部分解提供足够的能量。在晶格分解上产生的碳结构较少,受到周围钻石基质的巨大压力,导致高度不寻常的形成条件。通过定制递送到钻石的激光剂量,可以证明可以创建具有不同电导性能的连续修改的内部轨道。除了确定了导致半导体和绝缘书面轨道的经过广泛报道的指导轨道之外。高分辨率透射电子显微镜(HRTEM)用于可视化发生的结构转换,并提供对不同传导方式的见解。HRTEM揭示了激光照射产生的高度多样化的纳米碳结构,其中包括许多用于不同所谓的diaphite络合物的特征,这些签名在陨石样品中已看到,并且似乎介导了激光诱导的钻石损坏。这项工作提供了对陨石中钻石和相关纳米碳相可能的形成方法的见解。关键字:钻石,激光处理,电子设备,石墨线,陨石
*相应的作者: - pparida@iitp.ac..1摘要这项理论研究深入研究了两个六角形铁杆菌单层的结构,电子和电化学特性,1T-法和1H-FEAS,重点介绍其质地元素电池的潜在阳极材料。先前的研究强调了在室温下1T-雌激素的铁磁性质。我们的计算表明,这两个阶段都具有自旋偏振电子带结构的金属行为。电化学研究表明,1T-五叶单层对液离子的离子电导率比1H-FEAS期更好,这归因于0.38 eV的较低的激活屏障。此特征表明充电速度更快。两个富阶段均表现出可比的理论能力(372mahg⁻。),表现优于商业石墨阳极。最大LI原子吸附的平均开路电压为1H-FEAS为0.61 V,1T-FEAS的平均开路电压为0.61 V。在这两个阶段上LI原子的最大吸附上的体积膨胀也非常小于商业使用的阳极材料(例如石墨)。此外,Li原子上的吸附到1H-五叶中可以引起从铁磁性到抗铁磁性的显着过渡,对电子带结构的影响很小。相比之下,1T-FEAS的原始状态仍然不受LI吸附的影响。总而言之,1T-FEAS和1H-FEAS单层作为锂离子电池的有前途的阳极材料的潜力,为LI吸附后的电化学性能和相变行为提供了宝贵的见解。关键字:铁砷化铁,2D物质,阳极材料,扩散屏障,自旋极化。
例如,最近才证明,目前这一代 D-Wave 机器已经可以处理量子模拟 [ 12-14 ] 和经典优化 [ 15 ] 中复杂的现实问题,比如现有铁路网络中的冲突管理 [ 16 ],尽管在这个背景下尚未发挥量子优势。作为量子退火器,使用 D-Wave 机器解决问题依赖于绝热量子计算 [ 17 ],至少在理想情况下是这样。然而,与所有真实系统一样,D-Wave 机器也会受到噪声的影响 [ 18 , 19 ]。如果要将这个系统作为计算机实现用于实际应用,完整的表征至关重要。为此,非绝热激发的缩放特性已经得到了彻底研究 [ 20 , 21 ]。尽管与预期行为存在显著偏差(由于环境噪声),D-Wave 芯片似乎确实在横向场中实现了量子伊辛模型 [ 21 ]。
摘要:采用异种金属丝电子束增材制造技术在不锈钢基体上混合 5、10 和 15 vol.% Ti-Al-Mo-ZV 钛合金和 CuAl9Mn2 青铜,研究了制备的合金的微观结构、相和力学性能。结果表明,含 5 vol.% 钛合金的合金形成了不同的微观结构,含 10 和 15 vol.% 钛合金的合金也形成了不同的微观结构。第一种合金的特征是结构成分为固溶体、共晶金属间化合物 TiCu 2 Al 和粗大 γ 1 -Al 4 Cu 9 。它具有增强的强度并在滑动试验中表现出稳定的氧化磨损。另外两种合金还含有由于 γ 1 -Al 4 Cu 9 热分解而出现的大花状 Ti(Cu,Al) 2 树枝状晶粒。这种结构转变导致复合材料的灾难性脆化和磨损机制从氧化变为磨料。
对这些类型材料的潜在理化特性的深入了解将是成功实现其最终技术应用的关键组成部分。在电池运行过程中(在锂离子插入/脱氧反应期间)中电极中发生的结构变化的知识将是最重要的重要性,即捕获控制电池性能的相关结构 - 托管关系。特别是,组成OEM的分子和固态结构直接与影响岩性反应热力学的几种关键特性相关,例如锂离子配位环境,电子结构或反应动力学。此外,已知通过不同的机制[17]发生锂离子插入过程,从而导致电极材料的不同现象,例如相位分离和/或亚稳态相的出现。在前一种情况下,在静电期间没有出现稳定的中间阶段,因此导致了非步骤的过程。已知这种现象是针对几种无机性Lib阴极发生的,例如Li n fepo 4
基于半导体过渡金属二分法的晶体管可以提供高载体的迁移率,强旋转 - 轨道耦合以及在量子接地状态下固有强的电子相互作用。这使它们非常适合在低温下用于纳米电子产品。然而,在低温温度下与过渡金属二甲基化金属层建立强大的欧姆接触非常困难。因此,无法达到费米水平靠近带边缘的量子极限,从而探测了分数填充的Landau级级别中的电子相关性。在这里我们表明,使用窗户接触技术可以在从Millikelvins到300 K的温度范围内创建与N型钼二硫化物的欧姆接触。我们观察到超过100,000 cm 2 v -1 s -1的场效应,在低温下的传导带中,超过3,000 cm 2 v -1 s -1的量子迁移率超过3,000 cm 2 v -1 s -1。我们还报告了在最低的双层钼二硫化物中,填充4/5和2/5的分数量子厅状态的证据。
本文研究了德国电力系统中的分散市场,分散市场是指特定区域的市场,其中区域电力需求主要由区域发电满足,其余需求则由全系统水平满足。研究问题是:分散市场的规模和授权参与者的类型对能源转型的不同层次有何影响?结果表明,分散市场的最大影响是由燃气发电厂的使用增加造成的,因为它们是未来电力系统中的主要可调度发电机,导致二氧化碳排放量和发电成本显著增加,但当地自给率也更高。在 RES-E 份额非常高的情况下,参考案例和分散市场模型之间的结果几乎没有差别。分散市场规模的影响小于某些燃料类型或发电容量规模的限制。虽然分散市场可以减少电网负荷,但电网扩建的需要并没有减少。总的来说,我们得出的结论是,从系统角度来看,如果没有适当的监管,分散市场可能会产生负面影响,特别是在电力系统转型阶段。
List of Acronyms AC alternating current ACF area cost factor ATB Annual Technology Baseline BESS battery energy storage system BTU British thermal units CA California CAISO California Independent System Operator CAPEX capital expenditure or capital costs CO 2 carbon dioxide COD commercial operation date DC direct current DR demand response ECM energy conservation measures EE energy efficiency EIA U.S. Energy Information Association EPA Environmental Protection Agency FF-1 fossil fuel scenario #1 FF-2 fossil fuel scenario #2 FF-3 fossil fuel scenario #3 FF-4 fossil fuel scenario #4 FF-5 fossil fuel scenario #5 FF-6 fossil fuel scenario #6 FF-EE fossil fuel scenario with energy efficiency sensitivity gal gallons gm gram GWh gigawatt-hours HP horsepower ITC Investment Tax Credit kV kilovolts kW kilowatts lb.磅LC-1最小化生命周期成本方案#1 LC-CAP用较低的PV/BESS资本成本敏感性最小Megawatts MWH MEGAWATT小时NAS钠硫磺
前范德华的异质结构利用了可调的层极化,以交换电子活动区域中的近距离交换和自旋轨道耦合。也许最简单的例子是由一侧分层磁体和另一侧的强型旋转材料封装的Bernal Biyer石墨烯(BBG)。将WS 2 / BBG / CR 2 GE 2 TE 6作为代表性的前循环装置,我们从头开始使用现实的Ab ISSIM启发的哈密顿量和有效的电子电子相互作用,以研究随机相位近似中相关相的出现。我们发现,可以将交换和自旋轨道耦合诱导的石器和Intervalley连贯性不稳定性交换为给定的掺杂水平,从而使人们可以探索单个设备中的整个相关相。
3D打印金属零件的特性和可维护性取决于各种属性。这些包括化学成分,相,形态,晶粒尺寸和形状的空间分布,晶体学纹理以及各种缺陷。对这些属性的控制仍然是一个令人兴奋的机会和一个重大挑战,因为需要优化的许多过程变体和参数。工业相关的常见添加剂制造合金的所需属性,例如钢,镍,钛,铝和铜合金,以及拟合分级的材料的变化很大,并且需要特定合金的策略来控制其控制。最近的评论涉及有价值的处理 - 微观结构 - 托管关系,但不关注其控制策略。在这里,我们试图统一脱节的文献,并严格回顾控制晶粒结构,阶段和缺陷方面的最新进展。强调了数字工具的新兴使用,例如机械模型和数据驱动的技术,例如机器学习,尺寸分析和控制零件属性的统计方法。最后,我们确定了金属印刷中高影响力研究的机会,并根据现有证据展示未来的前景。
