简介程序性细胞死亡 1/程序性细胞死亡配体 1 (PD-1/PD-L1) 检查点阻断是一种很有前途的抗癌治疗方式 (1, 2)。然而,单药治疗(抗 PD-1 或 PD-L1 抗体)未能在许多肿瘤类型中引起有意义的反应,例如胶质母细胞瘤 (3)、胰腺导管腺癌 (PDAC) (4, 5) 和分化型甲状腺癌 (6)。开创性研究表明肿瘤浸润 CD8 + T 淋巴细胞是 T 细胞免疫疗法反应的主要预测指标 (7, 8)。因此,确定调节 CD8 + T 细胞浸润和功能的分子机制可能会拓宽免疫检查点疗法的治疗范围。巨噬细胞是肿瘤微环境 (TME) 中最丰富的免疫细胞类型之一 (9, 10)。一般而言,巨噬细胞可分为经典活化 (M1) 巨噬细胞或替代活化 (M2) 巨噬细胞 (9, 10)。虽然 M1 巨噬细胞可以产生促炎细胞因子并启动针对肿瘤细胞的免疫反应,但 M2 巨噬细胞和 TAM 往往会表现出免疫抑制表型,有利于肿瘤进展 (9, 10)。此前已证明,进入的 CD8 + T 细胞和 TAM 之间的物理接触会降低基质中 T 细胞的运动能力,从而限制其进入肿瘤巢 (11)。 TAM 还可以通过表达免疫检查点配体(例如 PD-L1)(12、13)、分泌免疫抑制细胞因子(例如 TGF-β、LIF、CCL22)(9、10)和限制 T 细胞增殖所需的代谢物(例如通过表达精氨酸酶-1 酶限制 L-精氨酸)(14-16)来抑制 CD8 + T 细胞功能。抑制或消耗 TAM 的努力已在几种临床前模型中显示出良好的抗肿瘤功效,因为它们可以增加 CD8 + T 细胞浸润并减少局部免疫抑制信号(11、17)。此外,TAM 可以限制
近年来,患者来源的原代细胞培养物在癌症临床前检测(包括药物筛选和遗传毒性研究)中的应用有所增加。然而,它们的转化价值受到多种限制的制约,包括可能由培养条件引起的多变性。在这里,我们表明常用于繁殖原代黑色素瘤培养物的培养基组成限制了它们对其肿瘤来源的代表性和细胞可塑性,并改变了它们对治疗的敏感性。事实上,我们建立并比较了不同黑色素瘤患者的培养物,这些培养物在低酪氨酸(Ham's F10)或高酪氨酸(补充酪氨酸的 Ham's F10 或 RPMI1640 或 DMEM)培养基中平行繁殖。酪氨酸是黑色素生物合成的前体,该过程在分化的黑色素细胞和黑色素瘤细胞中特别活跃。出乎意料的是,我们发现高酪氨酸浓度会促进早期表型向间充质样或衰老样表型转变,并阻止具有分化特征的黑色素瘤细胞培养物的建立,我们发现这些特征在人类临床活检中经常出现。此外,在这些培养条件下出现的侵袭性表型似乎是不可逆的,并且如预期的那样,与对 MAPKi 的内在抗性有关。与此形成鲜明对比的是,分化的黑色素瘤细胞培养物在低酪氨酸培养基中增殖时保留了它们的表型,更重要的是它们的表型可塑性,这是黑色素瘤细胞的一个关键特征。总之,我们的研究结果强调了在低酪氨酸培养基中培养黑色素瘤细胞的重要性,以保持其表型的起源身份和细胞可塑性。
肾上腺素/阿哌丁素核酸内切酶1/氧化还原因子-1(APE1/REF-1)是作用于细胞信号通路的多功能蛋白,包括DNA修复和氧化还原活性。APE1/REF-1已成为癌症治疗的靶标,其在乳腺癌模型中的作用将揭示癌症治疗的新策略。APX2009是一种特定的APE1/REF-1氧化还原抑制剂,其抗癌特性尚未在乳腺癌细胞中描述。在这里,我们研究了APX2009治疗在乳腺癌细胞系MDA-MB-231和MCF-7中的影响。乳腺癌细胞系,并进行WST1和菌落形成测定以评估细胞增殖。进行膜联蛋白V-FITC/7-AAD和LDH-GLO T测定法以评估细胞死亡。APX2009治疗后,进行了伤口愈合测定法和Matrigel Transwell分析,分别评估了细胞迁移和侵袭过程。我们的发现表明APX2009治疗降低了乳腺癌细胞增殖,迁移和侵入性特性。此外,它诱导了两种细胞系的凋亡。我们的研究是第一个显示APX2009治疗对乳腺癌细胞凋亡的影响。因此,这项研究表明APX2009治疗是乳腺癌的有希望的抗癌分子。
简介程序性细胞死亡 1/程序性细胞死亡配体 1 (PD-1/PD-L1) 检查点阻断是一种很有前途的抗癌治疗方式 (1, 2)。然而,单药治疗(抗 PD-1 或 PD-L1 抗体)未能在许多肿瘤类型中引起有意义的反应,例如胶质母细胞瘤 (3)、胰腺导管腺癌 (PDAC) (4, 5) 和分化型甲状腺癌 (6)。开创性研究表明肿瘤浸润 CD8 + T 淋巴细胞是 T 细胞免疫疗法反应的主要预测指标 (7, 8)。因此,确定调节 CD8 + T 细胞浸润和功能的分子机制可能会拓宽免疫检查点疗法的治疗范围。巨噬细胞是肿瘤微环境 (TME) 中最丰富的免疫细胞类型之一 (9, 10)。一般而言,巨噬细胞可分为经典活化 (M1) 巨噬细胞或替代活化 (M2) 巨噬细胞 (9, 10)。虽然 M1 巨噬细胞可以产生促炎细胞因子并启动针对肿瘤细胞的免疫反应,但 M2 巨噬细胞和 TAM 往往会表现出免疫抑制表型,有利于肿瘤进展 (9, 10)。此前已证明,进入的 CD8 + T 细胞和 TAM 之间的物理接触会降低基质中 T 细胞的运动能力,从而限制其进入肿瘤巢 (11)。 TAM 还可以通过表达免疫检查点配体(例如 PD-L1)(12、13)、分泌免疫抑制细胞因子(例如 TGF-β、LIF、CCL22)(9、10)和限制 T 细胞增殖所需的代谢物(例如通过表达精氨酸酶-1 酶限制 L-精氨酸)(14-16)来抑制 CD8 + T 细胞功能。抑制或消耗 TAM 的努力已在几种临床前模型中显示出良好的抗肿瘤功效,因为它们可以增加 CD8 + T 细胞浸润并减少局部免疫抑制信号(11、17)。此外,TAM 可以限制
人类遗传疾病通常是由复合杂合性突变引起的,其中突变基因的每个等位基因都具有不同的遗传病变。但是,由于缺乏适当的模型,对此类突变的研究受到阻碍。在这里,我们描述了在强制性酶二聚体中的复合异伴变体的动力学模型,该变体在一个单体中包含一个突变,而第二个单体中的另一个突变中包含一个突变。该酶由人YarS2编码用于Mito-trosyl-tRNA合成酶(MT-Tyrrs),该酶是氨基化酪氨酸到MT-TRNA Tyr的氨基酰基。yarS2是MT-氨基酰基-TRNA合成酶的基因的成员,其中致病性突变的疾病严重程度与酶活性之间的相关性有限。我们在YARS2中识别一对与新生儿死亡有关的化合物杂合变体。我们表明,虽然每个突变在MT-TYRR的同型二聚体中导致氨基酰化的最小缺陷,但反式跨性别的两个突变会协同降低酶活性,从而更大。因此,这种动力学模型准确地概括了疾病的严重程度,强调了其研究YARS2突变的效用及其对具有复合杂合突变的其他疾病的泛化潜力。
摘要。背景/目的:据报道,膜结合蛋白淋巴细胞抗原 6 家族成员 D (LY6D) 是早期 B 细胞谱系的标志物,在几种人类恶性肿瘤中表达,并与癌症干性有关。然而,其在胰腺导管腺癌 (PDAC) 中的表达和在癌症干性中的作用仍未得到充分探索。本研究旨在阐明 LY6D 在 PDAC 中的作用。材料和方法:我们对 LY6D 进行了功能分析,以评估其对体外 PDAC 细胞恶性特征的影响。利用我们内部开发的干细胞分离技术,该技术分离具有低蛋白酶体活性和 CD44 v9 细胞表面标志的癌症干细胞细胞,我们通过敲低 LY6D 表达在小鼠中进行了球体形成和化学敏感性测试以及肿瘤形成试验。还进行了免疫组织病理学分析,以揭示 LY6D 在 PDAC 中的临床意义。结果:体外功能测定表明,LY6D 在促进癌症恶性表型方面发挥关键作用,包括增强侵袭能力、耐药性、迁移能力和癌症
摘要:正向遗传筛选已显示出有害突变的后果;然而,它们最适合于繁殖率高、繁殖量大的模式生物。此外,研究人员必须如实地识别表型变化,即使是细微的变化,才能充分发挥筛选的优势。反向遗传方法也探测基因型与表型的关系,只是遗传目标是预先定义的。直到最近,反向遗传方法还依赖于非基因组基因沉默或相对低效的同源性依赖基因靶向来产生功能丧失的产物。幸运的是,成簇的规律间隔的短回文重复序列 (CRISPR)/Cas 系统的灵活性和简单性彻底改变了反向遗传学,几乎可以随意对任何生物体中的任何基因进行精确诱变。成功整合插入/缺失 (INDEL) 和无义突变,从表面上看,会产生预期的功能丧失表型,但事实证明,这些整合几乎没有效果,即使其他基因沉默方法显示出强大的功能丧失后果。结果之间的分歧提出了有关我们对基因型到表型的理解的重要问题,并强调了中心法则中的补偿能力。本综述描述了最近似乎存在基因组补偿的研究,讨论了可能的补偿机制,并考虑了对强大的基因功能丧失研究很重要的因素。
抽象的背景尽管在管理复发或难治性多发性骨髓瘤(RRMM)患者方面靶向B细胞成熟抗原(BCMA)的嵌合抗原受体T细胞(CAR-T)的结果令人鼓舞,但Cart-T细胞的治疗副作用和功能障碍限制了这种有望的方法的效率和临床应用。在这项研究中,我们将靶向PD-1的短发夹RNA盒纳入了具有OX-40共刺激结构域的BCMA车。在暴露于单个或重复的抗原刺激下,评估了转导的PD-1 KD CAR-T细胞的表面CAR表达,T细胞增殖,细胞毒性,细胞因子产生和亚群。在RRMM患者的I期临床试验中最初观察到安全性和功效。与亲本BCMA CAR-T细胞相比,PD-1 KD BCMA CAR-T细胞疗法显示,T细胞疲劳减少,体外记忆T细胞的百分比增加。在PD-1 KD BCMA CAR-T组中,还观察到体内更好的抗肿瘤活性。在七名RRMM患者的CAR-T细胞疗法的I期临床试验中,最初在所有七名患者中观察到安全性和功效,其中包括至少1名患者(4/7,57.1%),其中1例至少有1名患者和四名患者(4/7,57.1%),具有高风险的细胞遗传学。总回应率为85.7%(6/7)。四名患者有严格的完全反应(SCR),一名患者患有CR,一名患者有部分反应,一名患者患有稳定的疾病。的安全性,其发生率是轻度至中度细胞因子释放综合征,并且没有神经毒性的发生。结论我们的研究表明了独立于抗原特异性的CAR-T细胞的设计概念,并提供了提高CAR-T细胞疗法功效的替代方法。
在纤维肌痛(FMS)样本中研究了三种选定的疼痛多态性与临床,功能,心理物理,心理或认知变量之间的关联。一百二十三(n = 123)FM的女性完成人口统计学(年龄,身高,体重),临床(患有疼痛,疼痛,休息和日常生活中的疼痛强度),功能(生活质量,身体功能),感官相关,敏感性相关(敏感性相关和神经性焦虑症状),心理疼痛和心理学症状(心理学症状)认知(疼痛灾难性,运动恐惧症)变量。OPRM1 RS1799971,HTR1B RS6296和COMT RS4680的三种基因型是通过无刺激的整个唾液收集的聚合酶链反应获得的。根据OPRM1 RS1799971,HTR1B RS6296或COMT RS4680基因型在我们的FMS女性样本中鉴定出人口,临床,功能,与感觉有关,心理物理,心理和认知变量的显着差异。多级分析都没有揭示OPRM1 RS1799971 X HTR1B RS6296,OPRM1 RS1799971 X COMT RS4680和HTR1B RS6296 X COMT RS4680 X COMT RS4680 X HTR1B RS6296之间的任何显着基因相互作用。这项研究表明,三种单核苷酸多态性,OPRM1 RS1799971,HTR1B RS6296或COMT RS4680,主要与慢性疼痛有关,与FMS的表型无关。潜在的基因到基因相互作用及其与FMS女性临床表型的关联。
在胚胎时期,神经元通信在建立具有神经元兴奋性的突触之前就开始了,此处称为胚胎神经兴奋性(ENE)。ene已被证明可以调节发展转录程序的展开,但是并非全部了解开发生物的全球后果。在这里,我们监测了Ze-Brafish胚胎端脑中的钙(Ca 2 1),作为ENE评估瞬时药理处理疗效增加或减少ENE的疗效的代理。在胚胎周期结束时增加或减少ENE分别促进了多巴胺(DA)神经元的数量减少或减少。这种多巴胺能规范的可塑性发生在斑马鱼幼虫的下降(sp)中,后6 d后(DPF)在相对稳定的VMAT2阳性细胞中。非巴氨基能VMAT2阳性细胞构成了可以由ENE募集的DA神经元的储备库的无静止的生物标记。调节ENE在处理结束后几天还影响了幼虫运动。尤其是,ENE从2 DPF的增加增加了幼虫在6 dpf时的超塑,让人联想到斑马鱼内跨表型报道了注意力不足多动障碍(ADHD)。这些结果为识别可能干扰ENE的环境因素以及研究将ENE与神经递质规范联系起来的分子机制提供了方便的框架。
