动机:脑成像遗传学研究基因型数据(例如单核多态性(SNP)和成像定量性状(QTS))之间的复杂关联。神经退行性疾病通常表现出多样性和异质性,起源于该疾病,不同的诊断组可能会带有不同的成像QT,SNP及其相互作用。稀疏的规范相关分析(SCCA)被广泛用于识别双变量基因型 - 表型关联。然而,大多数现有的SCCA方法是无监督的,导致无法识别特定于诊断的基因型 - 表型关联。结果:在本文中,我们提出了一种名为MT – SCCALR的新联合多任务学习方法,该方法吸收了SCCA和逻辑回归的优点。MT – SCCALR共同学习多个任务的基因型 - 表型关联,每个任务都集中在识别一种诊断特定的基因型 - 表型模式上。同时,MT – SCCALR不仅可以为每个诊断组选择相关的SNP和成像QT,而且还允许将多个诊断组共享的SNP选择。我们得出了一种有效的优化算法,该算法可以保证其转化为局部最佳限度。与两种最先进的方法相比,MT – SCCALR产生更好或类似的规范相关系数和分类性能。此外,它拥有比竞争对手更好的判别规范权重模式。可用性和实施:该软件可在https://github.com/dulei323/mtsccalr上公开获得。这证明了MTSCCAR在识别诊断性异构基因型 - 表型模式方面的功能和能力,这将有助于了解脑疾病的病理生理学。联系人:dulei@nwpu.edu.cn或li.shen@pennmedicine.upenn.edu补充信息:补充数据可在Bioineformatics在线获得。
a 意大利帕多瓦大学医学系 - DIMED b 意大利帕多瓦帕多瓦大学医院病理学系 c 意大利特雷维索 Marca Trevigiana ULSS2 医院病理学系 d 意大利帕多瓦威尼托肿瘤研究所 IOV-IRCCS e 意大利帕多瓦帕多瓦大学医院外科、肿瘤学和胃肠病学系(DiSCOG)普通外科 3 f 意大利维罗纳大学与医院信托病理学科诊断与公共卫生系 g 意大利热那亚大学外科科学与综合诊断学系(DISC)解剖病理学 h 意大利热那亚 IRCCS Ospedale Policlinico San Martino,意大利热那亚大学外科科学与综合诊断学系(DISC) i 病理学研究单位,Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, 福贾, 意大利
成年肌纤维的收缩特性由其肌球蛋白重链异构体含量决定。在这里,我们通过 snATAC-seq 鉴定出重组快速肌球蛋白基因的位点上有一个 42 kb 的超级增强子。通过 4C-seq,我们发现活性快速肌球蛋白启动子通过 DNA 环路与该超级增强子相互作用,导致每个细胞核中单个启动子的激活。包括超级增强子的位点彩虹小鼠转基因模型重现了成年快速肌球蛋白基因的内源性时空表达。通过 CRISPR/Cas9 编辑原位删除超级增强子表明其在控制相关快速肌球蛋白基因方面发挥了重要作用,而删除位点上的两个快速肌球蛋白基因表明启动子对共享超级增强子存在积极竞争。最后,通过破坏快速肌球蛋白的组织,我们发现肢体骨骼肌内的位置异质性,这可能是某些肌病中选择性肌肉易受损伤的原因。
#相应的作者隶属关系:1联合和结缔组织疾病生物化学的部门,德国乌尔姆大学骨科系,骨科系:骨关节炎,鼻溶治疗,鼻溶治疗,衰老,衰老,dasatinib,dasatinib,dasatinib,dasatinib,dasatinib,dasatinib,dasatinib,烟素,槲皮素,脊髓素,小节型与老年人的相关性是扮演的较高的娱乐性,该效果是扮演的较高的病原体,是扮演较大的疾病,是扮演的较高的病原体,并且是缺陷的作用。骨关节炎(OA)。基于此,我们使用dasatinib(d)和槲皮素(Q)(Q)测试了鼻溶性组合疗法(Q),对年龄的人类关节软骨细胞(HAC)以及在OA影响的软骨组织(OARSI 1-2级)中测试了鼻溶治疗。用D+Q刺激在软骨外植体和孤立的HAC中选择性地消除了衰老细胞。此外,该疗法显着促进了软骨代谢,如COL2A1,ACAN和SOX9的基因表达水平增加,以及II型胶原蛋白II型和糖胺聚糖生物合成的升高所证明。此外,D+Q处理显着降低了SASP因子的释放(IL6,CXCL1)。RNA测序分析表明,合成代谢因子Inter,Inter,FGF18,IGF1和TGFB2的上调,以及对细胞因子和YAP-1信号传导途径的抑制作用,并解释了在治疗后软体动物促进的基础机制。因此,用D+Q处理的细胞的条件培养基对未处理的HAC刺激,同样诱导了软骨的表达。详细的分析表明,软骨代谢作用主要归因于dasatinib,而槲皮素或Navitoclax的单疗法应用并未促进软骨代谢。总体而言,D+Q治疗恢复了OA HAC中的软骨表型,最有可能通过减少SASP因子和增长因子上调来创建亲核代谢环境。因此,这种鼻溶性方法可能是一种有前途的候选者,可以作为一种疾病修饰骨关节炎药物。
脊柱和鳞茎肌肉萎缩(SBMA)是由异常的聚谷氨酰胺(Polyq)道在雄激素受体(AR)蛋白中膨胀引起的X连锁,成人发作的神经肌肉条件。SBMA是一种具有高未满足临床需求的疾病。最近的研究表明,改变的ARTER转录活性是疾病发病机理的关键。恢复转录失调而不影响其他AR关键功能,对治疗SBMA和其他与AR相关的疾病具有巨大的希望;但是,如何实现目标方法并将其转化为临床应用尚待理解。在这里,我们表征了AR同工型2的作用,Ar同工型的作用是一种天然存在的变体,编码了缺少Polyq-Harboring结构域的截短AR,是AR基因组功能在雄激素反应性组织中的调节转换。使用重新组合腺相关病毒载体9型的同工型通过恢复PolyQ AR降低转录活性,从而改善SBMA小鼠中疾病表型的疾病表型。
摘要:由于春季气温突变,大白菜这种食用叶菜类蔬菜会因抽薹而失去其商业价值,即从营养生长转变为生殖生长的现象。在本研究中,我们应用成簇的规律间隔的短回文重复序列/(CRISPR) 相关系统 9 (CRISPR/Cas9) 技术来分析 AGAMOUS 样基因。我们利用 CRISPR/Cas9 介导的大白菜转化技术对与抽薹和开花相关的 AGL19 和 AGL24 基因进行了功能分析。我们创建了脱靶概率低的单向导 RNA (sgRNA) 序列来构建基因编辑载体。进行农杆菌介导的转化,并使用分子生物技术方法分析了试验性的 E 0 AGL 编辑株系。与自交系“CT001”相比,两个 AGL19 编辑系(AGL19 基因靶序列中存在核苷酸序列突变)和四个 AGL24 编辑系(AGL24 基因靶序列中存在核苷酸序列突变)表现出特别晚的抽薹。使用芽授粉的世代进展获得了无 T-DNA 的 E 1 AGL 编辑系,其也表现出晚抽薹。AGL 蛋白功能的丧失是由于 AGL19 和 AGL24 基因中发生了插入/缺失突变,从而导致提前终止密码子。此外,移码突变导致结构变化并在 AGL19 和 AGL24 蛋白中引入提前终止密码子。我们的结果表明,CRISPR/Cas9 介导的 AGAMOUS 类基因编辑会导致晚熟表型,并且 CRISPR/Cas9 是一种用于分析大白菜 (Brassica rapa ssp. pekinensis) 基因功能的有用技术。
重瓣花表型因其在各种植物中的吸引力而被人类所选择,并且对观赏植物市场具有巨大的商业价值。在本研究中,我们调查了康乃馨、矮牵牛和玫瑰中显性重瓣花性状的遗传决定因素,并鉴定了 TARGET OF EAT (TOE) 型基因的突变等位基因,其特征是 miR172 靶序列和编码蛋白质 C 末端部分的破坏。尽管这些真双子叶植物之间存在系统发育距离,它们在白垩纪早期分化,但携带这些突变的直系同源基因都属于单个 TOE 型亚组,我们将其命名为 PETALOSA (PET)。同源性搜索使我们能够在其他各种物种中鉴定出 PET 序列。为了证实自然突变的结果,我们使用 CrispR-Cas9 在烟草 PET 基因的 miR172 靶位点内诱导病变,这导致了多余花瓣状结构的形成。本研究描述了具有经济价值的观赏物种中的 pet 等位基因,并提供了关于识别和改造 PET 基因以获得不同植物中理想的重花特性的可能性的证据。
镰状细胞病 (SCD) 是由成人血红蛋白 (Hb) 链中的单个氨基酸变化引起的,这种变化会导致 Hb 聚合和红细胞 (RBC) 镰状化。导致胎儿 珠蛋白在成年期产生的突变共同遗传,胎儿 Hb 的遗传性持续性 (HPFH) 降低了 SCD 的临床严重程度。HBG 珠蛋白启动子中的 HPFH 突变会破坏阻遏物 BCL11A 和 LRF 的结合位点。我们使用 CRISPR-Cas9 通过产生插入和缺失来模拟 HBG 启动子中的 HPFH 突变,从而导致已知和推定的阻遏物结合位点的破坏。编辑患者来源的造血干/祖细胞 (HSPC) 中的 LRF 结合位点可导致 珠蛋白去阻遏和镰状表型的纠正。用靶向 LRF 结合位点的 gRNA 处理的 HSPC 异种移植在重新植入 HSPC 方面表现出较高的编辑效率。这项研究确定了 LRF 结合位点是基因组编辑治疗 SCD 的有力靶点。
中国仓鼠卵巢 (CHO) 细胞系广泛应用于生物制药生产。细胞系生成的改进加快了最终生产克隆的速度,但开发新型生物分子、生产力限制和市场需求方面的挑战使得细胞系开发 (CLD) 必须不断改进。虽然细胞生长在 CLD 期间显示出明显的瓶颈,但对 CHO 细胞系生长表型的研究有限。最近的一项研究成功地分离并永生化了一种源自原代肺细胞的新型中国仓鼠细胞系,该细胞系表现出更快的生长速度、稳定的生产力和高水平的生物制药蛋白质生产 1 。值得注意的是,CHL-YN 细胞系的倍增时间缩短至 10.7 小时,而 CHO 细胞系的倍增时间通常为 18.0 至 22.0 小时。在这里,我们旨在进行全面的全基因组敲除 (KO) 筛选,以确定加速 CHO 细胞生长的遗传靶点和途径,揭示与 CHO 细胞生长相关的基本遗传机制。我们建立了一个强大的 CRISPR 能力的 CHO DG44 细胞系,能够在单向导 RNA (sgRNA) 存在的情况下以可预测的方式产生插入/删除 (InDel) 事件。此外,我们测试了使用小型 140 sgRNA 微型文库生成和培养转导文库的方法。我们优化的设置能够实现约 80% 的单拷贝整合,这比最近文献中的过去工作有所改进 2 。此外,我们为影响生长的基因靶标的 CRISPR 核酸酶表达依赖性富集和消耗效率提供了证据。
了解大脑结构的遗传结构是具有挑战性的,部分原因是在设计牢固的,无偏见的脑形态描述符时遇到了困难。直到最近,全基因组关联研究(GWAS)的大脑测量由传统的专家定义或软件衍生的图像衍生的表型(IDP)组成,这些表型(IDP)通常基于理论先入为主或根据有限数据计算。在这里,我们提出了一种使用无监督的深度表示学习来得出大脑成像表型的方法。我们在6,130英国生物库(UKBB)参与者的T1或T2-Flair(T2)脑MRIS上训练3D卷积自动编码器模型,以重建损失,以创建一个128维表示,称为内类型(Endos)。gwas在UKBB受试者中(n = 22,962发现和n = 12,848/11,717的T1/T2的复制队列)确定了658个涉及43个独立位点的显着复制变体 - 内对。在以前的T1和T2 IDP Biobank GWAS中没有报道13个基因座。我们开发了一种基于扰动的解释方法,以表明这些基因座与映射到多个相关大脑区域的胚胎相关。我们的结果确定了无监督的深度学习可以从成像数据中得出鲁棒,无偏,可解释的和可解释的内表型。
