单位 - III呼吸:ATP生物能货币,有氧和厌氧呼吸,KREB循环,电子传输机制(化学渗透理论),氧化还原电位,氧化磷酸化,磷酸盐磷酸盐途径。单位 - IV氮和脂质代谢:氮固定的生物学,硝酸盐还原酶的重要性及其调节,脂质的铵同化,脂肪酸的结构和功能,脂肪酸21生物合成,生物合成,&氧化,饱和脂肪和无饱和的脂肪酸,储存酸,脂肪酸,脂肪酸酸性。
T 细胞激活连接蛋白 (LAT) 是 T 细胞抗原受体 (TCR) 信号通路中一个关键的跨膜衔接蛋白 [1-4]。它由一个非常短的胞外结构域、一个具有两个棕榈酰化半胱氨酸残基的跨膜结构域和一个含有多个信号磷酸酪氨酸基序的胞内尾部组成 [1、2、5、6]。LAT 的重要性首次在 LAT 缺陷的 Jurkat 细胞系 JCaM2 和 ANJ3 中得到证实。这些细胞系在 TCR 激活后,钙信号传导和 ERK 磷酸化受损 [2、7]。LAT 缺陷的小鼠在早期胸腺 T 细胞发育中表现出严重的阻碍,导致外周 T 细胞数量低 [4、8、9] 和远端 TCR 信号传导缺陷 [2、4、10]。 LAT 胞内部分有 9 个保守的酪氨酸残基 (Y132、Y171、Y191 和 Y226,本文按照人类 LAT 编号),其中 4 个被鉴定为 TCR 信号级联中几个下游分子的重要停泊位点,如 Grb2、Gad 和 PLCγ1[1-3、6、10-13]。这些酪氨酸残基通过 ZAP-70 激酶进行磷酸化,是触发下游信号通路的关键步骤[1、2、13]。磷酸化的 Y132 是 LAT 中唯一能募集 PLCγ1 的基序。因此,Y132 对 Jurkat 细胞和小鼠的 TCR 下游信号转导至关重要[2、9、11-14]。令人惊讶的是,由于四足动物中所有已知的 LAT 序列中 131 位都有甘氨酸残基,Y132 不是 ZAP-70 的最佳底物 [ 12 , 15 ]。有人提出,低效的
PAH1 编码的磷脂酸 (PA) 磷酸酶是生产储存脂质三酰甘油的主要二酰甘油来源,也是酿酒酵母中从头合成磷脂的关键调节剂。Pah1 的催化功能取决于其膜定位,这是通过多种蛋白激酶的磷酸化和 Nem1-Spo7 蛋白磷酸酶复合物的去磷酸化来介导的。全长 Pah1 由催化核心(N-LIP 和 HAD 样结构域、两亲螺旋和 WRDPLVDID 结构域)和非催化调节序列(内在无序区域、RP 结构域和酸性尾部)组成,用于磷酸化和与 Nem1-Spo7 相互作用。催化核心如何调节 Pah1 定位和细胞功能尚不清楚。在本研究中,我们分析了 Pah1 的一种变体(即 Pah1-CC(催化核心)),它仅由催化核心组成。在低拷贝质粒上表达的 Pah1-CC 无需 Nem1-Spo7 即可补充 pah1 Δ 突变体表型(例如核/ER 膜扩张、三酰甘油水平降低和脂滴形成)。Pah1-CC 的细胞功能由其与膜部分主要相关的 PA 磷酸酶活性支持。尽管 Pah1-CC 具有功能性,但它在蛋白质和酶学特性方面与 Pah1 不同,包括过表达毒性、与热休克蛋白的关联以及 V max 值的显著降低。这些关于 Pah1 催化核心的发现增强了对其膜定位和活性控制结构要求的理解。
图2 PTM研究中的关键范例。在所有面板中(以及本文中的其他数字),用浅红色显示了修改,绿色的蛋白质底物,蓝色的作者,黄色的橡皮擦和紫罗兰的读者。(a)通过蛋白质磷酸化调节酶糖原磷酸化酶的糖原降解活性。该酶的磷酸化和去磷酸化最终受激素胰高血糖素和胰岛素调节,通过用虚线箭头示意性地指示的信号通路。(b)蛋白质泛素化作为26S蛋白酶体降解的信号。泛素化反应是由由E1,E2和E3蛋白组成的酶促级联反应,需要ATP。底物上的Degron基序通过与E3连接酶进行物理相互作用来促进泛素化。poly(ubiquityl)atted底物通过26S蛋白酶体内的受体蛋白识别,展开和降解。(c)通过组蛋白代码调节染色质结构和基因表达。组蛋白尾部的蛋白质修饰是由作者酶安装的,由橡皮擦酶除去,并被读取器蛋白识别。(d)基于面板C的PTMS调节蛋白质的一般方案。(E)从单个蛋白质编码基因产生多种蛋白质成型的变异来源。单个基因可以剪接以产生多种同工型,可以通过差异PTM模式进一步多样化。该图中省略的蛋白质成型多样性的其他来源包括,例如,单核苷酸多态性和替代翻译起始位点。ac,乙酰化;我,甲基化; P,磷酸化; UB,泛素。
e661残基。通过细胞热移分析,我们进一步证实了FLT3和KX2-391之间的相互作用。与DMSO相比,熔融曲线有明显的热移。KX2-391治疗导致检测到蛋白质。 KX2-391以剂量依赖性的方式提高了FLT3蛋白的热稳定性。 KX2-391对BA/F3细胞中FLT3具有有效的抑制作用。 它还抑制了表达FLT3ITD的BA/F3的生长以及所有表达FLT3ITD-TKD突变的细胞。 这些细胞以前被称为对AC220等FLT3抑制剂的抗药性。 BA/F3ITD-F691L细胞对KX2- 391(0.032mm vs. 0.372mm)的敏感性提高了十倍。 KX2-391对含有FLT3-ITD(MV4-11,MOLM13)的人类白血病细胞具有更高的抑制作用,比在FLT3-突变的白血病细胞上具有更高的抑制作用。 我们观察到表达FLT3 – ITD,FLT3 – ITD-D835Y和FLT3 – ITD-F691L的BA/F3细胞的剂量依赖性诱导凋亡。 另外,我们在两个FLT3 – ITD阳性AML细胞系中观察到了它(图 1E,F KX2-391显着抑制了FLT3-ITD中的FLT3和下游靶标STAT5,ERK和AKT的磷酸化,FLT3-ITD-F691L-表达BA/F3细胞以及我们的测定面板的其他细胞。 KX2-391是微管蛋白/SRC抑制剂。 我们监测了SRC磷酸化,以评估KX2-391对微管结构的影响。KX2-391治疗导致检测到蛋白质。KX2-391以剂量依赖性的方式提高了FLT3蛋白的热稳定性。KX2-391对BA/F3细胞中FLT3具有有效的抑制作用。 它还抑制了表达FLT3ITD的BA/F3的生长以及所有表达FLT3ITD-TKD突变的细胞。 这些细胞以前被称为对AC220等FLT3抑制剂的抗药性。 BA/F3ITD-F691L细胞对KX2- 391(0.032mm vs. 0.372mm)的敏感性提高了十倍。 KX2-391对含有FLT3-ITD(MV4-11,MOLM13)的人类白血病细胞具有更高的抑制作用,比在FLT3-突变的白血病细胞上具有更高的抑制作用。 我们观察到表达FLT3 – ITD,FLT3 – ITD-D835Y和FLT3 – ITD-F691L的BA/F3细胞的剂量依赖性诱导凋亡。 另外,我们在两个FLT3 – ITD阳性AML细胞系中观察到了它(图 1E,F KX2-391显着抑制了FLT3-ITD中的FLT3和下游靶标STAT5,ERK和AKT的磷酸化,FLT3-ITD-F691L-表达BA/F3细胞以及我们的测定面板的其他细胞。 KX2-391是微管蛋白/SRC抑制剂。 我们监测了SRC磷酸化,以评估KX2-391对微管结构的影响。KX2-391对BA/F3细胞中FLT3具有有效的抑制作用。它还抑制了表达FLT3ITD的BA/F3的生长以及所有表达FLT3ITD-TKD突变的细胞。这些细胞以前被称为对AC220等FLT3抑制剂的抗药性。BA/F3ITD-F691L细胞对KX2- 391(0.032mm vs. 0.372mm)的敏感性提高了十倍。KX2-391对含有FLT3-ITD(MV4-11,MOLM13)的人类白血病细胞具有更高的抑制作用,比在FLT3-突变的白血病细胞上具有更高的抑制作用。我们观察到表达FLT3 – ITD,FLT3 – ITD-D835Y和FLT3 – ITD-F691L的BA/F3细胞的剂量依赖性诱导凋亡。另外,我们在两个FLT3 – ITD阳性AML细胞系中观察到了它(图1E,F KX2-391显着抑制了FLT3-ITD中的FLT3和下游靶标STAT5,ERK和AKT的磷酸化,FLT3-ITD-F691L-表达BA/F3细胞以及我们的测定面板的其他细胞。KX2-391是微管蛋白/SRC抑制剂。 我们监测了SRC磷酸化,以评估KX2-391对微管结构的影响。KX2-391是微管蛋白/SRC抑制剂。我们监测了SRC磷酸化,以评估KX2-391对微管结构的影响。
肌萎缩侧索硬化症是一种致命的神经退行性疾病,目前尚无治愈方法可以逆转其进展。其主要特征是核蛋白 TDP-43,该蛋白经历了不同的翻译后修饰,导致细胞核功能丧失,细胞质毒性增加。先前的报告表明,致病性 TDP-43 在各种情况下都表现出类似朊病毒的传播。为了推进预防 TDP-43 病理传播的治疗方法,我们研究了致病性 TDP-43 在散发性 ALS 患者淋巴母细胞中的潜在作用。我们使用散发性 ALS 患者的淋巴母细胞系作为致病性 TDP-43 的来源,并使用健康人类细胞(淋巴母细胞、成肌细胞、神经母细胞瘤 SH-SY5Y 或骨肉瘤 U2OS)作为受体细胞,以研究 TDP-43 蛋白病的播散和扩散。此外,我们评估了使用 CK-1 抑制剂靶向 TDP-43 磷酸化以防止病理传播的潜力。本文呈现的结果表明,致病形式的 TDP-43 分泌到散发性 ALS 淋巴母细胞的细胞外介质中,并可以通过细胞外囊泡运输,将 TDP-43 病理传播到健康细胞。此外,在病理细胞中也发现了隧道纳米管,可能参与 TDP-43 的运输。有趣的是,使用内部设计的 CK-1 抑制剂 (IGS2.7) 靶向 TDP-43 磷酸化足以阻止 TDP-43 病理传播,此外,它还具有恢复患者来源细胞中 TDP-43 蛋白稳态的已知作用。
简介 糖尿病最严重的病理后果之一是伤口愈合受损或延迟,在严重的情况下,这会导致下肢截肢 (1-3)。尽管慢性不愈合伤口的病因基础是多方面的,但异常血管生成至少在一定程度上与维持这种表型有关。在伤口愈合过程中,血管生成芽会降落到伤口区域以建立常氧,最终形成微血管网络以恢复伤口区域的氧气和营养输送并帮助清除碎屑 (4-6)。因此,促进血管生成对于伤口愈合至关重要,开发有效的血管生成靶点可以使数百万糖尿病患者受益。血管内皮生长因子 (VEGF) 是一种关键的血管生成因子,它通过 VEGF 受体 (VEGFR) 发出信号 (7)。在 VEGFR 家族中,VEGFR2 比其他 VEGFR 更能增强血管生成。 VEGF 与 VEGFR2 结合导致 VEGFR2 磷酸化并激活下游信号通路,包括丝裂原活化蛋白激酶/细胞外信号调节激酶 (MAPK/ERK) 和磷脂酰肌醇-3-激酶/v-akt 鼠胸腺瘤病毒致癌基因同源物 1 (PI3K/AKT),从而促进内皮细胞 (EC) 增殖、迁移和存活 (8, 9)。在糖尿病条件下,VEGF 诱导的 VEGFR2 磷酸化和下游信号传导减少,导致血管生成受损 (10-12)。因此,深入了解 VEG-FR2 依赖性血管生成的调节可能有助于确定这种背景下的新治疗策略。
引言糖尿病最严重的病理结局之一是受损或延迟的伤口愈合,在严重的情况下,这可能导致下肢截肢(1-3)。尽管慢性非治疗伤口的病因基础是多方面的,但异常血管生成至少部分参与了维持这种表型。在伤口愈合期间,血管生成芽降临在伤口区域以建立诺米亚,并最终塑造微血管网络以恢复氧气和营养素到伤口区域的递送,并有助于清除碎屑(4-6)。因此,促进血管生成对于伤口愈合至关重要,而为血管生成开发有效的靶标可能会使数百万糖尿病患者受益。血管内皮生长因子(VEGF)是通过VEGF受体(VEGFRS)信号的关键血管生成因子(7)。在VEGFRS家族中,VEGFR2比其他VEGFR更有效地增强了血管生成。Binding of VEGF to VEGFR2 leads to the phosphorylation of VEGFR2 and activa- tion of downstream signaling pathways, including mitogen-activated protein kinase/extracellular signal– regulated kinase (MAPK/ERK) and phosphatidylinositol-3-kinase/v-akt murine thymoma viral oncogene homolog 1 (PI3K/AKT),促进内皮细胞(EC)增殖,迁移和存活率(8,9)。在糖尿病条件下,VEGF诱导的VEGFR2和下游信号传导的磷酸化降低,导致血管生成受损(10-12)。因此,在这种情况下,获得了对VEG-FR2依赖性血管生成的调节的见解,可能会导致鉴定新的治疗策略。
人群:用 EPA 和 12-HEPE 处理健康人类捐献者的清洗血小板或富含血小板的血浆,以评估其抑制血小板活化的能力。用针对血管损伤止血反应不同步骤的激动剂刺激血小板。分析了血小板聚集、致密颗粒分泌、整合素 α IIb β 3 和 P-选择素的表面表达以及血凝块回缩。为了评估通过 G α s-GPCR 和蛋白激酶 A 活性的信号传导,在用 EPA 或 12-HEPE 处理后,通过蛋白质印迹检查血管扩张刺激磷蛋白 (VASP) 的磷酸化。结果/预期结果:EPA 和 12-HEPE 剂量依赖性地抑制胶原蛋白和凝血酶诱导的血小板聚集。此外,与 EPA 相比,12-HEPE 更能有效地减弱致密颗粒分泌和血小板活化标志物整合素 α IIb β 3 和 P-选择素的表面表达。用 EPA 处理的血浆延迟了凝血酶诱导的血凝块回缩,而 12-HEPE 没有影响。此外,用 12-HEPE 处理会增加 VASP 的磷酸化,表明它可以通过激活二十烷酸 G α s-GPCR 发出信号。讨论/意义:在这里,我们首次表明 EPA 通过其 12-LOX 代谢物 12-HEPE 直接抑制血小板活化。这些发现进一步深入了解了 EPA 的心脏保护作用的潜在机制。更好地了解当前的 PUFA 补充剂可以为心血管疾病的治疗和预防提供信息。
