摘要。太赫兹波的控制为下一代传感、成像和信息通信提供了深厚的平台。然而,所有传统的太赫兹元件和系统都存在体积庞大、对缺陷敏感和传输损耗大等问题。我们提出并通过实验证明了拓扑器件的片上集成和小型化,这可能解决太赫兹技术的许多现有缺陷。我们设计和制造了基于谷-霍尔光子结构的拓扑器件,可用于片上太赫兹系统的各种集成组件。我们用拓扑波导、多端口耦合器、波分和回音壁模式谐振器证明了谷锁定非对称能量流和模式转换。我们的设备基于拓扑膜超表面,这对于开发片上光子学具有重要意义,并为太赫兹技术带来了许多特性。
资料来源:欧盟。2020 年 11 月委员会报告 - 奥地利环境署和 Borderstep 研究所发布的节能云计算技术和生态友好型云市场的政策
纳米技术的近期爆炸性生长受到快速发展的纳米技术的点燃,这表明光表现出非凡的光 - 与亚波长度尺度结构的物质相互作用。这种异国情调的行为不仅表现出寻找前所未有的光学的重要性,而且还暗示了在可见范围内实现现实世界应用的可能性。的确,纳米光子学的最新进展表明,基于纳米光子的设备和应用可能是以紧凑的方式替换常规笨重的光学组件的有力候选者。国际超材料,光子晶体和血浆(META)是纳米光子学研究的年度会议。它尤其涵盖了超材料,光子晶体,血浆和纳米光子设备和应用的各种研究。最新的会议是Meta'21,是由于1921年7月20日至23日大流行而在网上举行的,纳米光子学,超材料和相关主题的最新发展在世界范围内。此特刊“纳米光学的最新趋势”介绍了会议中的邀请和精选研究和审查文章的集合。等离子体学是纳米光子学的主要分支,处理表面等离子体,即金属 - 介电接口处电子的集体振荡。Kim等。 [1]在超短时尺度(〜飞秒或更少),所谓的超快等离子体学评论等离震源。 Menabde等。 Xu等。 等离子间的两个主要特征是严格的场限制和现场增强。Kim等。[1]在超短时尺度(〜飞秒或更少),所谓的超快等离子体学评论等离震源。Menabde等。 Xu等。 等离子间的两个主要特征是严格的场限制和现场增强。Menabde等。Xu等。 等离子间的两个主要特征是严格的场限制和现场增强。Xu等。等离子间的两个主要特征是严格的场限制和现场增强。在两个选定的示例中,对超快等离子体学的基本原理和最新成就进行了广泛的综述:强结构物理学和超压缩光谱。[2]对图像极化子进行了全面的综述,这是一种新型的极化模式,当材料靠近高度导电材料(以范德华的晶体形成)时,它与镜像结合。作者描述了图像极化子和各种范德华晶体的分散体,包括双曲线和非局部特征以及实验突破。[3]提出了一种平衡 - 热动力计算方法,以推广先前报道的理论以计算浆质电位。为了提高应用范围和先前模型的准确性,作者引入了一种等效的波长方法来估计吸收横截面并结合了等离激元的局部加热。广义方法可以量化非MIE谐振等离子系统中的等离子电势,而常规方法仅适用于MIE谐振系统。前者实现隐藏的光 - 物质相互作用[4]。Sakai等。 证明,由金四聚体组成的等离激元纳米结构可以在纳米级区域内用四极性弹药挤压结构光。 这种结构化的光紧密结合在等离激元纳米结构中,使作者能够访问由于长度尺度不匹配而禁止的多极转变。 Baghramyan和Ciracì[5]使用量子流体动力学理论评估发射极的荧光增强,并与矛盾Sakai等。证明,由金四聚体组成的等离激元纳米结构可以在纳米级区域内用四极性弹药挤压结构光。这种结构化的光紧密结合在等离激元纳米结构中,使作者能够访问由于长度尺度不匹配而禁止的多极转变。Baghramyan和Ciracì[5]使用量子流体动力学理论评估发射极的荧光增强,并与同时,已知后者,即等离子纳米结构附近的领域增强,可以加速附近发射器的自发发射,但同时表现出淬灭作用。
从超材料到元面积,光学纳米结构已被广泛研究,以提高新型和高效率的功能。除了复合材料的内政特性外,丰富的功能还可以源自尼古拉斯的司法设计,该设计比传统的批量操作元素更具出色和高度集成的光学设备。同时,可以将大量的经典域中光的操纵abilites置于量子域。在这篇综述中,我们重点介绍了基于元信息的量子光学量的最新开发,范围从量子质量,产生,操纵和量子光的应用到量子效果工程等。最后,提出了一些有前途的量子光学途径。
抽象光子学有望在量子技术中发挥独特的作用,用于计算,通信和传感。同时,具有固有的相位稳定性和高性能的纳米级成分,还具有缩放速度的途径。但是,每个集成平台都有一组独特的优势和陷阱,可以限制其力量。到目前为止,量子光子电路的最先进的演示是在硅光子中。但是,薄膜硅锂(TFLN)正在成为具有独特功能的强大平台。制造的进步使任何集成光子平台的损失指标具有竞争力,而其较大的二阶非线性则提供了有效的非线性处理和超快速调制。在这篇简短的综述中,我们探讨了动态量子电路的前景,例如多路复用光子源和纠缠产生 - 在硅(TFLN/SI)光子学上的混合TFLN(TFLN/SI)光子学上,并认为混合TFLN/SI光子学可能具有明天的光子量子技术的能力。
量子力学提供的理解彻底改变了技术,导致了半导体、晶体管、激光器的发展,以及由此而来的计算机和互联网。这些第一代量子技术改变了社会,促进了科学理解。非局域相关性(纠缠)的概念最初似乎是量子理论的一个缺陷,但随着实验的不断成熟,它的检验越来越严格,并产生了意想不到的应用 1 – 5 。量子纠缠和量子叠加 6 是第二代量子技术 7 – 9 的基础,可应用于计算 10 、模拟 11 、通信 12 、传感和计量 13 – 15 等任务。基于超导电路和光子的量子计算机比当今的传统处理器 16 具有计算优势,尽管仅限于特定任务。尽管仍然存在许多可扩展性、实施和算法方面的挑战,但量子计算的目标应用包括(一大类)优化问题,这些问题可用于更有效地设计靶向药物和个性化医疗 17 – 19 或改善物流 20 以保护自然资源和管理财务和个人风险 21。超灵敏量子传感器可以使先进的医疗
摘要。高维量子态的实验工程是几种量子信息协议的关键任务。然而,应用现有的量子态工程协议需要对噪声实验装置进行高精度的表征。这在实际场景中往往是缺乏的,影响了工程状态的质量。我们通过实验实现了一个自动自适应优化协议来设计光子轨道角动量 (OAM) 状态。该协议在给定目标输出状态的情况下,根据输出测量统计数据对当前产生的状态的质量进行在线估计,并确定如何调整实验参数以优化状态生成。为了实现这一点,该算法不需要包含生成设备本身的描述。相反,它在完全黑盒的场景中运行,使该方案适用于各种各样的情况。该算法控制的手柄是一系列波片的旋转角度,可用于概率地生成任意四维 OAM 状态。我们在经典和量子领域展示了不同目标状态下的方案,并证明了其对控制参数外部扰动的鲁棒性。这种方法代表了一种强大的工具,可用于自动优化量子信息协议和技术的嘈杂实验任务。
•领导和指导图片工程团队。•光子组件(主动和被动)的建模,仿真,设计和布局以及硅光子学,磷化物,磷化二硅,氮化硅,二氧化硅等中的电路。•铸造厂和软件提供商接口。•对技术人员,实习生和/或其他熟练技术人员执行的技术任务的监督。•在准备客户和研发建议以及项目任务方面的协作。•客户接口:电视和会议,项目管理。•支持招募新员工。•在基础架构方面维持和确定需求。•计划和监视图片设计团队中的资源和活动。•有助于持续改进与团队相关的流程,例如工程和文档最佳实践和工具的使用。
摘要。高维量子态的实验工程是几种量子信息协议的关键任务。然而,应用现有的量子态工程协议需要对噪声实验装置进行高精度的表征。这在实际场景中往往是缺乏的,影响了工程状态的质量。我们通过实验实现了一个自动自适应优化协议来设计光子轨道角动量 (OAM) 状态。该协议在给定目标输出状态的情况下,根据输出测量统计数据对当前产生的状态的质量进行在线估计,并确定如何调整实验参数以优化状态生成。为了实现这一点,该算法不需要包含生成设备本身的描述。相反,它在完全黑盒的场景中运行,使该方案适用于各种各样的情况。该算法控制的手柄是一系列波片的旋转角度,可用于概率地生成任意四维 OAM 状态。我们在经典和量子领域展示了不同目标状态下的方案,并证明了其对控制参数外部扰动的鲁棒性。这种方法代表了一种强大的工具,可用于自动优化量子信息协议和技术的嘈杂实验任务。
可编程的光子集成电路正在成为量子信息处理和人工神经网络等应用的有吸引力的平台。但是,由于商业铸造厂缺乏低功率和低损耗相变的速度,当前可编程电路的尺度能力受到限制。在这里,我们在硅光子铸造厂平台(IMEC的ISIPP50G)上演示了具有低功率光子微电体系统(MEMS)的紧凑相位变速器。该设备在1550 nm处达到(2.9π±π)相移,插入损耗为(0.33 + 0.15 - 0.10)dB,AVπ为(10.7 + 2.2 - 1.4)V,和(17.2 + 8.8-4.3)的Lπ。我们还测量了空气中1.03 MHz的致动带f -3 dB。我们认为,我们对硅光子铸造型兼容技术实现的低损坏和低功率光子磁化相位变速杆的证明将主要的障碍提升到可编程光子集成电路的规模上。©2021美国光学协会根据OSA开放访问出版协议的条款