摘要:叶绿体是通过蓝藻类共生体与宿主内共生进化而来的光合细胞器。许多研究试图分离完整的叶绿体来分析其形态特征和光合活性。尽管一些研究将分离的叶绿体引入不同物种的细胞中,但其光合活性尚未得到证实。在本研究中,我们从原始红藻 Cyanidioschyzon merolae 中分离了具有光合活性的叶绿体,并通过共培养将其整合到培养的哺乳动物细胞中。整合的叶绿体保留了其细胞内囊体的结构,并保持在细胞质中,被细胞核附近的线粒体包围。此外,整合的叶绿体在整合后至少 2 天内在培养的哺乳动物细胞中保持光系统 II 的电子传递活性。我们的自上而下的基于合成生物学的方法可以作为创造人工光合动物细胞的基础。
世界上的海洋受到气候变化的挑战,这些变暖与通常人口稠密的沿海地区特别容易受到这些影响的影响。许多关于海洋环境的气候变化的研究都使用大型的短期温度操纵,忽略了诸如长期适应和季节性周期之类的因素。在这项研究中,自1970年代以来,波罗的海“加热”海湾受核反应堆的影响(与附近未受影响的“控制”海湾有关)来研究温度升高如何影响地表水微生物群落和活动。16S rRNA基因扩增子基于微生物的多样性和种群结构在地表水微生物群落中的α多样性没有差异,而β多样性在海湾之间显示出不同的差异。放大测序变体的托架之间的相对丰度在统计学上的值分别在统计学上更高的值,例如,在加热和控制海湾中,iLumatobacteraceae和Burkholderiaceae分别显示出较高的值。RNA转录衍生的活动遵循Alpha和Beta多样性的类似模式,对Shannon的H多样性没有影响,但海湾之间的Beta多样性有显着差异。RNA数据进一步显示,在加热湾中分配了更高的转录本计数,其中包括热休克蛋白基因DNAKJ,co-Chaperonin gros和核苷酸交换因子热休克蛋白GRPE。RNA数据还显示,与对照(例如ATPAEFB)湾相比,加热的氧化磷酸化转录物升高(例如ATPHG)。此外,与光合作用有关的基因在控制湾中通常具有较高的转录本,例如光系统I(PSAAC)和II基因(PSBABCEH)。在加热湾中增加的压力基因反应可能会对海洋碳循环和生态系统服务产生额外的级联作用。
摘要背景研究人员已经开发了基于机器学习的ECG诊断算法,这些算法匹配甚至超过心脏病专家的性能水平。但是,它们中的大多数不能用于现实世界中,因为老年的ECG机器不允许安装新算法。目的是开发一种智能手机应用程序,该应用程序会自动从照片中提取ECG波形,并通过研究人员构建的各种诊断算法将其转换为电压序列进行下游分析。方法是使用客观检测和图像分割模型从临床医生拍摄的照片中自动提取ECG波形的一种新型方法。模块化机器学习模型的开发是为了依次执行波形识别,脱离环线和比例校准。然后使用基于机器学习的心律分类器分析提取的数据。从40个516扫描和444张照片的ECG的结果波形自动提取。扫描13 258(96.8%)的12 828(96.8%)和5743中的5399(94.0%)被正确裁剪和标记。11 604 of 12 735(91.1%)扫描,5752中的5062(88.0%)拍摄的波形在自动环和噪声删除后获得了成功的电压时间信号提取。在概念验证示范中,使用ECGS的照片作为输入,使用ECGS的照片,可达到91.3%的敏感性,94.2%的敏感性,94.2%的特异性,95.6%的阳性预测价值,88.6%的负预测值和93.4%的F1得分。结论对象检测和图像分割模型允许从照片中自动提取ECG信号以进行下游诊断。这条新颖的管道规定了需要昂贵的ECG硬件升级的需求,从而为大规模实施基于机器学习的诊断算法铺平了道路。
照片开关是在光线激发后在异构体之间可逆的分子。自然存在的光异构分子的关键例子是视网膜,它经历了吸收光子的z / e同组化,该光子启动了负责视觉的细胞信号传导级联。1 During the last century, chemists have designed a myriad of arti cial photoswitch structures: azobenzenes, 2 (sti ff -)stilbenes, 3 indi- goids, 4 diarylethenes, 5 norbornadienes/quadricyclanes, 6 spi- ropyrans/merocyanines, 7 and donor – acceptor Stenhouse adducts (DASAs), 8 to name一些(图1a)。同组化时开关变化的理化特性,并引起光反应函数。例如,可以利用Azobenzenes,Stilbenes和Indigoid的E - Z异构体来控制分子系统的超分子相互作用或将菌株诱导到宏观材料中。另一方面,日钟甲烯和螺旋形的电循环分别改变了这些分子的结合和偶极矩。这些现象可以在医学分子或宏观水平上运行的光响应系统中被利用,9个生物科学,10,11催化,12
照片开关是在光线激发后在异构体之间可逆的分子。自然存在的光异构分子的关键例子是视网膜,它经历了吸收光子的z / e同组化,该光子启动了负责视觉的细胞信号传导级联。1 During the last century, chemists have designed a myriad of arti cial photoswitch structures: azobenzenes, 2 (sti ff -)stilbenes, 3 indi- goids, 4 diarylethenes, 5 norbornadienes/quadricyclanes, 6 spi- ropyrans/merocyanines, 7 and donor – acceptor Stenhouse adducts (DASAs), 8 to name一些(图1a)。同组化时开关变化的理化特性,并引起光反应函数。例如,可以利用Azobenzenes,Stilbenes和Indigoid的E - Z异构体来控制分子系统的超分子相互作用或将菌株诱导到宏观材料中。另一方面,日钟甲烯和螺旋形的电循环分别改变了这些分子的结合和偶极矩。这些现象可以在医学分子或宏观水平上运行的光响应系统中被利用,9个生物科学,10,11催化,12
红色珊瑚藻在整个沿海海洋中创造出丰富的,巨大的礁石生态系统,并提供了大量的生态系统服务提供,但是我们对它们的基本生理学的理解缺乏。尤其是,产生碳和碳序列过程之间的平衡和联系仍然受到限制,这对了解它们在碳固存和存储中的作用具有重要意义。使用双放射性同位素跟踪,我们提供了在红色珊瑚藻(Red Coralline Alga Boreolithamnion Soriferum)(以前是Lithothamnion Soriferum)中的光合作用(需要CO 2)和钙化(需要CO 2)之间耦合的证据。通过光合作用将39±14%纳入了有机物。只有38±2%的隔离HCO 3-转化为CO 2,其中几乎40%的内部回收为光合基质,将碳的净释放降低至总吸收量的23±3%。钙化速率在很大程度上取决于光合底物的产生,从而支持光合增强的钙化。此处报道的有效的碳复合生理学表明,钙化藻类可能对海洋CO 2的释放贡献不如当前假设的贡献太大,从而支持其在蓝色碳核算中的作用。
1 阿姆斯特丹自由大学理学院物理与天文系,荷兰阿姆斯特丹 1081 HV 2 兰卡斯特大学兰卡斯特环境中心,英国兰卡斯特 LA1 3SX 3 伊利诺伊大学植物生物学系 Carl R. Woese 基因组生物学研究所,美国伊利诺伊州厄巴纳 61801 4 莫纳什大学理学院生物科学学院,澳大利亚维多利亚州墨尔本 3800 5 瓦赫宁根大学生物物理实验室,荷兰瓦赫宁根 6708 WE 6 埃塞克斯大学生命科学学院,英国埃塞克斯 CO4 3SQ 7 爱丁堡大学生物科学学院、分子植物科学研究所,英国爱丁堡 EH9 3BF 8 爱丁堡大学生物科学学院工程生物学中心,英国爱丁堡 EH9 3BF 9 系加州大学植物与微生物生物学系,伯克利,加利福尼亚州 94720,美国 10 加州大学霍华德休斯医学研究所,伯克利,加利福尼亚州 94720,美国 11 加州大学创新基因组学研究所,伯克利,加利福尼亚州 94720,美国 12 劳伦斯伯克利国家实验室分子生物物理和综合生物成像部,伯克利,加利福尼亚州 94720,美国 13 米兰大学生物科学系,意大利米兰 20133 14 海因里希海涅大学植物生物化学研究所,植物科学卓越集群 (CEPLAS),杜塞尔多夫 40225,德国 15 中国科学院碳捕获重点实验室,分子植物科学卓越中心,上海 200032,中国 *通讯作者:r.croce@vu.nl † 作者按字母顺序列出(以除了主要作者/协调编辑之外)。根据作者须知 ( https://academic.oup.com/plcell ) 中所述的政策,负责分发与本文所述研究结果相关的材料的作者是:Roberta Croce ( r.croce@vu.nl )。
(HO)通过在适当的光照射下在肿瘤中获得的光敏剂(PS)的光激发(PS)。3,4 PDT过程可以分为I型和II型,具体取决于PS与其附近的ps触发反应。3,4具体,I型反应涉及氢原子抽象或电子转移,最终导致自由基和过氧化氢的形成(H 2 O 2),而II型II型通过从电子激发的三胞胎PS到地面分子氧的能量转移导致单线氧(1 O 2)的产生。3,4 II型PDT是主要机制,因为大多数PSS是II型。3,4不幸的是,这种对周围氧气的依赖性与肿瘤缺氧的固有特性相矛盾。缺氧是由于快速癌细胞增殖和不规则的血管生成,在实体瘤的微环境中发现了一个显着而重要的特征。5与在大多数健康组织中发现的40-60 mmHg范围相比,肿瘤低氧区域中的氧气通常降至10 mmHg以下。6因此,由于II型PDT高度依赖氧浓度,因此低氧肿瘤
与温室或田野中的常规农作物种植相比,具有人造光的植物工厂(PFAL)在高效利用可用于耕种的空间,能源和资源方面具有优势。然而,据报道,很少有关于改善PFAL空间使用功效(SUE)在植物大豆毛豆生产中的空间使用功效(SUE)的研究。因此,开发一种以最小空间和能源需求的高生产率的环境控制方法是高优先级。这项研究的目的是(1)确定最佳的光合光子通量密度(PPFD)和光质量,以增强在营养生长阶段的雌芳族的SUE,并且(2)检查PPFD,光质量的影响,光质量及其对植物阶段的Edamame植物生长的相互作用。sue定义为在生长期间每立方体培养的农作物生物量。,我们检查了三种PPFD处理(300、500和700μmolM -2 S -1),共有三种色温LED灯(3,000、5,000和6,500 K),总共进行了九种处理。结果表明,在相同的轻质处理下,较高的PPFD导致所有器官的新鲜和干重,较高的茎长和较低的特定叶片面积。在同一PPFD处理下,蓝色(400–499 nm)与红色(600–699 nm)光子通量密度的高比例增加了植物的高度,但降低了预计的叶片面积。与300μmolM -2 s -1相比,分别在700μmolm -2 s -1中分别以3,000、5,000和6,500 K的形式增加了213、163和92%,分别为3,000、5,000和6,500 K。与3,000 K处理相比,在5,000和6,500 K处理中,SUE在700μmolM -2 S - 1中分别增加了34和23%。总而言之,在PFAL中,在营养生长阶段增加了700μmolm -2 s -1 ppfd和5,000 K色温的组合是增加毛虫的起诉。
1961 年 9 月初,一个高度机密的情报机构成立,负责为美国设计、开发、建造和操作国家侦察卫星,以保护美国和西方盟友免受苏联的突然核攻击,并获取有关其他国家和地区对国家安全至关重要的宝贵情报。这个机构就是国家侦察局——国防部和中央情报局的合作机构——它的机密性极高,以至于在其成立后的前三十年里,绝大多数国会议员都不知道它的存在,甚至一些在这里工作的员工也不知道。在适当的安全设施和极少数经过审查的人员之外透露该机构的名称被视为犯罪行为。