准确预测硅中的药物目标亲和力(DTA)对于现代药物发现至关重要。在药物开发的早期阶段应用的DTA预测的计算方法,能够大大降低其成本。最近提出了基于机器学习的广泛方法进行DTA评估。它们最有前途的是基于深度学习技术和图形神经网络来编码分子结构。Alphafold做出的蛋白质结构预测的最新突破使得无前前数量的蛋白质,而没有实验定义的结构可用于计算DTA预测。在这项工作中,我们提出了一种新的深度学习DTA模型3DPROTDTA,该模型与蛋白质的图表结合使用了Alphafold结构预测。该模型优于其在通用基准数据集上的竞争对手,并且具有进一步改进的潜力。
●本课程分别列为11-741(研究生12个单位)和11-441(本科生的9个单位)。●11-741名学生必须完成所有5份家庭作业,并在期中和期末考试中回答所有问题。●11-441名学生必须在总共5个家庭作业(通过自己的选择)和70%的考试问题(通过自己的选择)中进行4分。如果本科生选择做更多的家庭作业,我们将在最终的HW分级中使用最优秀的4分。同样,如果本科生选择做更多的考试问题,我们将使用考试评分中70%最佳回答问题的分数。●详细的作业描述如下: - HW1。实施神经网络(CNN和RNN)进行二进制分类,并在Yelp评论数据集中使用单词嵌入,并使用TensorFlow或Keras等软件。> HW2。实现Yelp评论的多类分类的软马克斯逻辑回归,并通过损失函数的梯度推导。- HW3。实施Pagerank,个性化的Pagerank和查询敏感的Pagerank方法,用于网页流行度分析并评估其在Citeeval数据集中的检索性能。> HW4。实现图形神经网络(GNN)模型,用于SIMI监督节点分类,链接预测和图形分类。> HW5。知识图推理;带有transe的节点。
在计算机科学和人工智能不断发展的景观中,模糊图理论和拓扑指数的整合为决策过程提供了强大的框架。模糊图,其特征是它们处理不确定性和不精确的能力,扩展了传统的图形概念,从而使复杂网络的更细微的表示。本研究探讨了模糊拓扑指数在梯子和网格图中的应用,这些阶梯和网格图是网络理论中的基础结构。梯子图,类似于梯子的梯级,以及代表网状结构的网格图,通过模糊图理论的镜头进行分析,以提取有意义的见解,有助于决策。模糊拓扑指数与这些图形结构的融合为评估网络鲁棒性,优化路线和增强整体系统可靠性提供了强大的工具。本文深入研究了传统拓扑指数的探索,例如randić索引以及模糊的拓扑指数和模糊的Zagreb索引,专门用于梯子和网格图。我们通过机器学习技术分析上述图表,并提供全面的统计分析。我们发现梯子和模糊阶梯图之间以及网格和模糊的网格图之间存在很强的相关性。我们的发现表明,如果已知梯形图和网格图中的拓扑索引的值,那么我们可以准确地预测梯形图和网格图的模糊拓扑索引的值。使用机器学习技术对清晰和模糊图中的拓扑指数进行分析是一种创新的方法,不仅可以节省时间,而且还提供了更全面,更精确的评估。
我最喜欢的人倾向于思考知识图是我们将世界视为事物的看法,而不一定是如何将数据存储和结构化为字符串。以及组织内部的许多这些信息存储库。因此,概念,商业概念的概念,我们都可以与人,地点,订购供应商,字体,代表性的skus以及这些商业概念之间的关系相关联是您如何开始描述数据并将含义附加到其上的关键。这确实是许多组织中知识图的体现。,因此,知识图确实适合这种模具,其中知识图的焦点往往是在需要消耗信息而不是需要如何生成,结构化或存储的信息上。以及在业务概念层面上以业务层面的代表数据,以至于企业中的所有用户不一定必须具有技术背景,了解技术的需求和寻找的内容,并以这种方式代表这些数据,只有这些数据只能使他们能够成为这个位置,使我们能够在这个位置处于这个位置,我们最终可以在自我服务的角度来看,这是我的最终数据,我知道这一点是我的讨论,而我的讨论得出了,这是我的讨论,这是我的讨论,这是我的讨论,而这是我的讨论,而这是一个如此之多,这是我的讨论,而这是一个如此之所以如此,这是我在这个位置的讨论。
图形匹配,也称为网络对齐,是识别两个图表之间的双向反射,从而最大程度地提高了公共边数的数量。当两个图彼此完全同构时,此问题将减少到经典的图形同构问题,其中最著名的算法在准杂音时间时间中运行[1]。通常,图形匹配是二次分配问题[7]的实例,该实例已知可以解决甚至近似[38]。是由现实世界应用(例如社交网络去匿名化[45]和计算生物学[51])以及了解平均计算复杂性的需求,最近的研究集中在统计模型下的理论基础和有效的算法。这些模型假设这两个图是在隐藏的顶点对应关系下随机生成的,其中有相关的边缘,其中规范模型是以下相关的随机图模型。对于任何整数n,用u = u n表示为1≤i=j≤n的无序对(i,j)集。
摘要。知识图(kgs)已成为突出的数据表示和管理范式。通常受到架构(例如,本体论)的基础,KGS不仅捕获了事实信息,而且捕获了上下文知识。在某些任务中,一些公斤将自己确立为标准基准。但是,最近的工作概述依靠有限的数据集集合不足以评估方法的概括能力。在一些数据敏感领域(例如教育或医学)中,对公共数据集的访问更加有限。为了纠正上述问题,我们释放了Pygraft,这是一种基于Python的工具,生成了高度定制的域 - 不可能的模式和KGS。合成的模式包含各种RDF和OWL构建体,而合成的KG则模仿了真实世界KGS的字符和规模。最终通过运行描述逻辑(dl)追求来确保生成资源的逻辑一致性。通过提供单个管道中同时产生模式和kg的方式,Pygraft的目的是赋予在基于图形的机器学习(ML)或更一般的KG处理等领域的基准新颖方法中生成更多样化的kgs。在基于图的ML中,这应该促进对模型性能和概括能力的更全面评估,从而超越了可用基准的有限收集。Pygraft可在以下网址提供:https://github.com/nicolas-hbt/pygraft。
教学大纲:1。图理论和网络科学背景(≈25%)A。基本定义和符号B.关键属性和概念C.网络分析基础D.应用 /激励示例2。< / div>图形模型(≈37.5%)A。图形模型的概述B.定向图形模型(贝叶斯网络)C。无向图形模型(马尔可夫随机字段)D。推理方法和不确定性E.图形模型中的学习。应用程序3。基于图的神经网络和几何深度学习(≈37.5%)A。为什么图形神经网络(GNN)?B.早期图形嵌入方法C.图形卷积网络(GCN)D. GNN体系结构的变体E.几何深度学习中的主题F.培训和实际考虑G.应用和成功故事
我们研究电压偏置的单渠道连接处的电荷传输,涉及有限的库珀对动量的螺旋超导体。对于约瑟夫森结,平衡电流相关的关系显示出超级传导二极管效应:临界电流取决于传播方向。我们为电压偏置的约瑟夫森二极管制定了一种散射理论,并表明多个安德烈的反射过程在DC电流 - 电压曲线中导致在低温和小电压下,由于光谱间隙的多普勒移位而导致的小电压。在当前偏向的情况下,二极管效率具有最大的矩效率η0≈0。4对于此模型。在电压偏置的情况下,拟合效率可以达到理想值η=1。我们还讨论了正常金属和螺旋超导体之间正常驾驶连接的电荷传输,并对具有自旋轨道相互作用和磁性Zeeman Fileds的相关模型发表评论。
pla窃在计算机科学教育中普遍存在[CJ08; MUR10],主要是由于易于复制数字作业。尽管将其理解为不当行为,但一些学生仍继续进行窃,经常试图通过重命名,重新排序或插入代码来混淆它[kar16; NJK19; sağ+22; sağ+23b; sağ+24b]。在大型强制性课程中,手动检查不切实际[CAM+17],使自动窃检测必不可少[OTT76]。诸如Moss和Jplag之类的软件探测器通常用于解决此问题,假设成功的混淆需要已经教授的技能。然而,窃的发电机,例如mossad [db20],通过在不需要专业知识的情况下自动化混淆来挑战这一假设。Mossad通过插入熵或重新排序语句以逃避检测来打破基于令牌的检测器。
本文提出了一种通过从文本科学语料库中提取相关实体并以结构化和有意义的方式组织它们来构建两个特定领域知识图的方法。该方法使用语义Web技术,涉及重复使用共享的基于RDF的标准词汇。theaiageresearchgroup 1收集了8,496Scientificarticlespublybethighthewewewnebetnexweew中与小麦的选择有关。我们使用alvisnlp [1]工作流程来识别指定的实体(NE)以及小麦品种和表型之间的关系。总共有88,880个提及4,318个不同命名的实体已被识别为frompubMedAbstractsantles。同样,收集的ThediaDeresearchGroup 217,058Sci-InfificarticlespublyBetebethextewnekewnevewnemtheybetebetikeentbewnextectikeentebetike from thearoryzabasedatabase [2],该[2]在手术中检查了与水稻基因组学相关的PubMed条目。我们使用hunflair ner tagger [3]在标题和文章摘要中提取NES。总共确定了351,003个提及63,591个不同的NE。双皮属性介于thatrefertogenes,遗传标记,特征,表型,分类群和品种实体中提到的标题和摘要出版物中提到的实体。在可能的情况下,这些NE与现有语义资源相关。小麦表型和特质提及与小麦特质本体论3(WTO)中的类别有关,分类单元与NCBI 4分类学类别有关。inderfaphsthecorepartofthedatamodelisbasadeonthew3cwebannotationology(OA),已与不同的词汇相辅相成,描述了Yacoubi等人中描述的文档。[4]。施工管道涉及两个主要步骤。首先,我们使用SPARQL微服务[5]来查询PubMed的Web API,并将文章的元数据(包括标题和摘要)转换为RDF 5。其次,使用Alvisnlp [1]和Hunflair [3]来提取和链接