在其边缘有离散时间标签的时间网络中,信息只能沿着边缘的序列“流”,而无需降低(分别增加时间标签。在本文中,我们第一次尝试了解一个边缘上信息流的分解如何影响其他边缘上信息流的方向。通过自然地扩展静态图中及时取向的经典概念,我们介绍了时间及时方向的基本概念,并系统地研究了其算法行为。我们的主要结果是一种概念上的简单,但在技术上涉及的多项式时间算法,用于识别时间图G是否可以定位。与众不同,我们证明,令人惊讶的是,必须认识到G是否可以严格定位。此外,我们还将进一步的与时间传递性有关的问题引入,尤其是它们的时间传递完成问题,我们证明了算法和硬度结果。
摘要 本综述讨论了有机分子结晶多晶型之间的固-固相变分析。虽然活性药物成分 (API) 是综述的范围,但无论有机分子是否具有生物活性,都没有特别定义其在结晶状态下的相互作用。因此,其他小有机分子也已纳入本分析,在某些情况下也讨论了聚合物。本综述的重点是实验分析;但是,增加了计算和理论方法部分,因为这些方法变得越来越重要,并且显然有助于理解例如转变机制,因为结果可以很容易地可视化。讨论了晶体结构之间固-固相变的以下方面。讨论了涉及热力学平衡的多晶型之间的相变热力学以及与吉布斯自由能密切相关的变量温度和压力。讨论了有机结晶固体中的两种主要转变机制,即置换和协同转变。回顾了用于理解 API 不同多晶型之间的机制和热力学平衡的实验方法。本文讨论了多晶型物性的转换,并回顾了热存储和释放,因为这是固态相变的主要应用之一。限制相变对于药物产品的控制很有吸引力,本文对其进行了回顾,因为它可能有助于通过使用亚稳态相来提高 API 的生物利用度。最后,本文讨论了有机材料的二级相变,这种相变似乎很少见。可以得出的结论是,尽管人们对多晶型和相变的一般理论有了很好的理解,但它对特定分子的作用仍然难以预测。
sec。401。Ø281»国立卫生研究院组织。(a)对P ublic H iealt service的兴趣。1(b)n national research i nstitutes and n national c进入。(2)国家心脏,肺和血液研究所。(3)国家糖尿病和消化和肾脏疾病研究所。(4)国家关节炎,肌肉骨骼和皮肤疾病研究所。(5)国家老化研究所。(6)美国国家过敏和传染病研究所。(7)Eunice Kennedy Shriver国家儿童健康与人类发展研究所。 (8)国家牙科和颅面研究所。 2(9)国家眼科研究所。 (10)国家神经系统疾病和中风研究所。(7)Eunice Kennedy Shriver国家儿童健康与人类发展研究所。(8)国家牙科和颅面研究所。2(9)国家眼科研究所。(10)国家神经系统疾病和中风研究所。
(a) 部长应在卫生服务部门内开展研究、调查、实验、示范和研究,并鼓励、合作和协助其他适当的公共当局、科研机构和科学家开展这些研究、调查、实验、示范和研究,并促进这些研究的协调,这些研究涉及人类身心疾病和损伤的成因、诊断、治疗、控制和预防,包括水净化、污水处理和湖泊和溪流污染。在履行上述职责时,部长有权—— (1) 通过出版物和其他适当手段收集和提供有关此类研究和其他活动及其实际应用的信息; (2) 向适当的公共当局、卫生官员和从事专门研究的科学家开放卫生服务部门的研究设施; (3)根据咨询委员会向支持此类项目的部门实体推荐的研究项目,向大学、医院、实验室和其他公立或私立机构及个人提供补助金,并根据咨询委员会向部门适当实体推荐的研究项目,向公立或非营利性大学、医院、实验室和其他机构提供补助金,以对其研究进行一般支持;(4)在其认为适当的时间内,随时获得美国或国外专家、学者和顾问的帮助和建议;
自然历史藏品一直是系统和分类学研究的支柱,因为它们保存完好,可以为表型分析提供可重复性和可比性 [1]。面对生物多样性危机和持续的资金不足,自然历史藏品的重要性受到越来越多的关注 [1-6]。博物馆兴趣的复苏部分归因于数字化力度的加大以及技术进步,使得全球范围内的数据共享成为可能 [7]。博物馆标本长期以来一直被用于大规模进化、生物多样性和生态研究,但公开数据的增加为开展更广泛、更具协作性的研究创造了机会 [8]。最近,有人呼吁解决自然历史藏品中的问题(例如缺乏行政支持、人手不足、标本存放数量下降、标本质量下降),以便为下一阶段更广泛的博物馆研究取得成功做好准备 [4,1]。确保博物馆研究能够长期持续下去的一种方法是始终如一地使用最佳实践进行长期保存和储存方法,这些方法因群体而异。
结合非线性设备(如约瑟夫森结)的超导微波电路是新兴量子技术的主要平台。电路复杂性的增加进一步需要有效的方法来计算和优化多模分布式量子电路中的频谱、非线性相互作用和耗散。在这里,我们提出了一种基于电磁模式下耗散或非线性元件的能量参与比 (EPR) 的方法。EPR 是一个介于 0 和 1 之间的数字,它量化了每个元件中存储的模式能量。EPR 遵循通用约束,并根据一个电磁本征模式模拟计算得出。它们直接导致系统量子汉密尔顿和耗散参数。该方法提供了一种直观且易于使用的工具来量化多结电路。我们在各种约瑟夫森电路上对这种方法进行了实验测试,并在十几个样本中证明了非线性耦合和模态汉密尔顿参数在几个百分比内的一致性,能量跨越五个数量级。
我们研究了 k -稳定器通用量子态的概念,即 n -量子比特量子态,这样就可以仅使用局部操作和经典通信在任何 k 量子比特上诱导任何稳定器状态。这些状态概括了 Bravyi 等人提出的 k -可配对状态的概念,可以从组合的角度使用图状态和 k -顶点小通用图进行研究。首先,我们证明了 k -稳定器通用图状态的存在,它们的大小在 n = Θ(k2) 量子比特时是最优的。我们还提供了参数,对于这些参数,Θ(k2) 量子比特上的随机图状态以高概率是 k -稳定器通用的。我们的第二个贡献包括在 n = O(k4) 量子比特上 k -稳定器通用图状态的两个明确构造。两者都依赖于有限域 F q 上射影平面的入射图。这比之前已知的 n = O(2 3 k) 的 k 可配对图状态的显式构造有了很大的改进,带来了一类新的、具有强大潜力的多部分量子资源。
编辑器:J。Hisano通过引人入胜的𝑈(1)𝐵-𝐿标准模型的扩展,可以很好地激发携带𝐵-𝐿电荷之间的颗粒之间的新第五力。量规玻色介质Féeton也是暗物质候选人。在这封信中,我们提出了一种新型的实验设计,以检测使用超导约瑟夫森连接的第五力引起的量子相差异。我们发现,当仪表玻色子质量范围内时,实验对量规耦合具有最佳的敏感性。01 eV至10 eV,这是Féeton暗物质的一个有趣的质量区域。这为毫米以下小规模的新物理学测量开辟了新的途径。
结构该课程应在完全离线模式下进行,讲座24小时和24小时的教程。更多详细信息可以在网站上找到:https://sites.google.com/view/giansparsegraph/home重要日期的最后日期注册的最后日期:2025年1月31日(优先级给予较早注册的人)接受: (星期日)2025)参与▪主要目标参与者是博士学位。来自数学或计算机科学的学生或研究兴趣的相关部门在于图理论和图形算法。本课程可能会导致研究项目和合作。▪高级大师(M.Sc./m.tech。或同等的)学生也鼓励具有特殊兴趣和背景的学生和算法参与。▪来自知名的学术机构和技术机构的感兴趣的教职员工也被视为潜在参与者。