自 2019 年 12 月在中国武汉首次爆发以来,新型冠状病毒肺炎 (SARS-CoV-2) 已成为一场全球健康危机。2020 年 1 月 30 日,世卫组织将 COVID-19 疫情认定为突发公共卫生事件,并于 2020 年 3 月 11 日宣布其为大流行。虽然所有年龄组都受到了影响,但囊性纤维化 (CF) 患者和 1 型或 2 型糖尿病患者被归类为极易感染 SARS-CoV-2 的人。到目前为止,研究发现 CF 人群中 SARS-CoV-2 的发病率低于一般人群。我们回顾了可能减少 CF 患者炎症和肺损伤的潜在保护机制,从而降低他们患严重 COVID-19 的风险。虽然 SARS-CoV-2 对与 CF 相关的糖尿病患者的影响尚不清楚,但其他形式的糖尿病与更严重的疾病有关。为了进一步了解 SARS-CoV-2 对囊性纤维化相关糖尿病的潜在影响,我们全面概述了导致其他形式糖尿病中 COVID-19 严重程度的潜在因素,包括病毒对胰腺的直接影响以及与高血糖和免疫失调相关的间接影响。
通过分析已经通过血浆的激光束的横向强度分布来描述高能密度等离子体的特性。使用射线传递矩阵分析,可以通过光束偏转角度直接校准折光仪的输出。本文描述了一种新颖的方法,该方法是根据激光束的横向强度分布的空间波数校准折光仪输出的方法。这是通过用栅格结构代替等离子体来调节梁的横向强度,从而产生以已知傅立叶变换的强度分布来实现的。这种校准技术将生成偏转角度的一对一映射到波数,并可以测量系统可用的傅立叶空间的尺寸。激光束穿过高能密度等离子体时产生的波数谱可能包含有关等离子体中存在的密度波动类型的信息。
达到碳Not效率的热力学气体功率周期需要等温膨胀,13与过程缓慢相关,并导致功率输出可忽略不计。这项研究14提出了一种实用方法,用于快速接近等温气体的扩张,促进有效的热量15发动机而无需牺牲功率。该方法涉及传热16液体中的气泡膨胀,从而确保有效且近等温热的交换。混合物通过17个收敛的喷嘴加速,将热能转化为动能。利用这些喷嘴的等温膨胀的新型有机18蒸气循环建议利用低19年级的热源。空气和水的喷嘴实验产生的多质指数<1.052,20比绝热扩张高达71%的工作提取。在小尺度21加热发动机上的模拟表明,使用这些喷嘴进行推力产生,可以减少热量22在周期中传输不可逆性,从而使功率输出23高达19%的功率输出23。这项工作为有效的24个高功率热力解决方案铺平了道路。25
Composition of the Jury President: Prof. Luc Vanhame Secretary: Prof. Anna Marini Thesis Director: Prof. Joseph Vamecq Thesis Director: Prof. Véronique Kruys Examinators: Prof. Adelin Albert Prof. Pierre Andreoletti Prof. Jamal Ghoumid External experts/ Rapporteurs: Prof. Alain Leon Prof. Mustapha Cherkaoui Malka Vanhamme guest members Jean Boogaerts教授Mervyn Maze
Composition of the Jury President: Prof. Luc Vanhamme Secretary: Prof. Anna Marini Thesis Director: Prof. Joseph Vamecq Thesis Director: Prof. Véronique Kruys Examinators: Prof. Adelin Albert Prof. Pierre Andreoletti Prof. Jamal Ghoumid External experts/ Rapporteurs: Prof. Alain Leon Prof. Mustapha Cherkaoui Malki Chairman: Prof. Vanhamme客座成员Jean Boogaerts教授Mervyn Maze
将尖端技术集成到教育环境中一直构成了一系列挑战,AI也不例外。这些挑战范围从教师适应到道德考虑(Moya和Camacho,2024年)。然而,吉奈的迅速发展和采用已经超过了以前的技术进步,促使学生和教育工作者都有前所未有的吸收(Moorhouse,2024年)。Genai的动态性质及其重塑教育格局的潜力必须使潜在教师获得其有效整合所需的能力(Hong等,2024; Mnguni,2024)。作为AI引入了新的机会,它同时带来了风险,例如学习者依赖(Ye等,2025)和算法歧视(Cherner等,2024),这些歧视可以加剧教育机会中现有的不平等现象。这强调了教师不仅要开发技术AI技能,而且还要发展强大的数字教学法,包括制作有效提示的量身定制的Genai应用并促进积极的态度和对AI技术的有效提示的能力(Knoth等,2024)。
纳米谱材料是用于光学,电子和生物探测器应用的低维材料生长的材料的有希望的构建基块。特别是,自下而上的合成0D石墨烯量子点作为单个量子发射器显示出很大的潜力。要充分利用其令人兴奋的特性,石墨烯量子点必须具有很高的纯度;有效的纯度的关键围栏是起始材料的溶解度。在这里,我们报告了一个高度溶剂且易于采用的棒状石墨烯量子点的合成,其含量高达94%。这对于红色排放而言罕见。高溶解度与结构的设计直接相关,从而可以准确描述溶液和单分子水平的石墨烯量子点的光物理特性。通过量子化学计算完全预测了这些光物理特性。
通过人工图案化的各向异性材料(例如介电交代面)的光传播,可以使用高度跨父,薄的和平坦的光学元素来精确控制光场的空间 - 矢量性能。液晶细胞是这种设备的常见实现。光损失通常被认为是偏振依赖性的,因此经常在对这些系统进行建模时经常看到。在这项工作中,我们将带有图案性双重双重和二色性的电液晶元质体引入,通过将二甲状腺染料分子掺入液 - 晶体混合物中来实现。这些染料分子与液晶,有效的耦合双发性和二色性效应对齐。使用非单身琼斯矩阵描述了这些跨度的行为,并通过极化测量验证。在形成形成形成极化光栅的depitices的情况下,我们还表征了衍射效率,这是二分法和双发性参数的函数,可以通过在整个细胞上施加电场来共同调谐。这项研究不仅引入了一类新的光学成分,而且还加深了我们通过各向异性材料对光传播的理解,在这些材料中,二色性可以自然地来自散装材料的特性,或者来自其接口处的反射和传播定律。
在典型的量子信息引擎中具有量子优势的发动机,工作物质由离散的,量子键入的电子状态制成。在描述其运作方式时,在过去的10年内从理论上成熟了量子热纳米的领域,强调了这种工作物质与外界之间的量子相互作用的优势。几个概念可以构成这种引擎中的量子资产。例如,该工作物质的激发量子状态可以在返回基态后提供量子来源3的附加工作来源3。这是所谓的麦芽糖4的一个例子。此外,制造了工作物质,以选择性地与发动机的冷水浴室相互作用。这些相互作用是连贯的,并且是按电子/能量定制的,可以等同于量子信息测量/工作物质的设置,这也会产生麦角属5。一般而言,麦内型允许量子发动机的表现优于其经典的3-7。在过去的3年中,已经报道了发动机中这种量子优势的一些实验证明3,6 - 8。到目前为止,实现了设置和测量原子上电子水平的量子状态的发动机周期(例如,具有未配对电子旋转3,6的氮空位中心钻石几乎完全是光学实验的领域。通常使用可见光和微波激发进行发动机笔触,并使用发光进行发动机状态读数。通过通过明确的外部输入来制定每一次中风,科学家可以研究这些引擎的内部工作和量子资产的作用。但是,由于操作发动机所需的大量辅助设备,这种基本方法排除了任何实际应用。
。cc-by 4.0国际许可证是根据作者/资助者提供的,他已授予MedRxiv的许可证,以永久显示预印本。(未通过同行评审认证)