尽管霍尼韦尔国际公司认为本文所含信息准确可靠,但本文不提供任何形式的担保或责任,也不构成霍尼韦尔国际公司的任何明示或暗示的陈述或保证。许多因素可能会影响与用户材料一起使用的任何产品的性能,例如其他原材料、应用、配方、环境因素和制造条件等,用户在生产或使用产品时必须考虑所有这些因素。用户不应认为本文包含了正确评估这些产品所需的所有数据。本文提供的信息并不免除用户自行进行测试和实验的责任,用户承担与使用本文所含产品和/或信息相关的所有风险和责任(包括但不限于与结果、专利侵权、法规遵从性以及健康、安全和环境有关的风险)。
本文介绍的所有陈述,信息和数据都被认为是准确和可靠的,但不应作为保证,明示保证或对特定目的或使用的适销性或适用性的保证或隐含的保证,在此,所有这些保证或适用于特定目的或适用性,或者所有这些都被视为silberline假设的责任,并指定了您的法律责任,并指定了silberline的代表或暗示。单个产品信息和材料安全数据表可应要求提供Silberline,因此必须引用,因为与使用这些产品有关的潜在严重危害。可以通过您当地的Silberline代表获得成绩选择的帮助。有关产品配方和帮助,请联系Silberline的技术服务/产品应用部。Silberline不保证,保证或暗示保证适销性或适用于特定目的或使用此处所指的产品的混合物,无论是否根据Silberline制定的指南,所有这些都不根据Silberline执行的所有成分,所有这些都不根据特此否决。
颜料是在食品[1],美容产品和制药行业[2],[3]中经常使用的着色剂。颜料是一种通过波长选择吸收的物质,可修饰反射或发射光的颜色。颜料可以合成和自然地获得[4]。虽然合成色素是化学制成的,并且经常具有比天然色素相比具有可取的颜色一致性和质量,但天然色素是从矿物,植物或动物中取的。如今,天然颜料是一种天然染料之一,可以代替合成染料在各种应用中,尤其是在食品领域中。 天然色素可以源自包括细菌,真菌和藻类在内的微生物以及植物和动物[5],[6]。 色素的化学结构及其对光的反应对其颜色产生了影响。 我们的眼睛感知到颜色,因为某些颜料在反射其他颜料时吸收了某些波长。 颜色的寿命可能会因其化学结构及其存在的环境而变化或改变。 例如,某些色调更适合特定应用,因为它们在暴露于热,光或化学物质时不会很容易褪色[7]。 并非每个着色剂都可以安全地用于所有应用中。 如果食用,吸入或浸泡在皮肤上,有些人可能有毒。 因此,为特定应用程序选择它们至关重要。如今,天然颜料是一种天然染料之一,可以代替合成染料在各种应用中,尤其是在食品领域中。天然色素可以源自包括细菌,真菌和藻类在内的微生物以及植物和动物[5],[6]。色素的化学结构及其对光的反应对其颜色产生了影响。我们的眼睛感知到颜色,因为某些颜料在反射其他颜料时吸收了某些波长。颜色的寿命可能会因其化学结构及其存在的环境而变化或改变。例如,某些色调更适合特定应用,因为它们在暴露于热,光或化学物质时不会很容易褪色[7]。并非每个着色剂都可以安全地用于所有应用中。如果食用,吸入或浸泡在皮肤上,有些人可能有毒。因此,为特定应用程序选择它们至关重要。
法国分销商Snetor和Meg聚合物宣布了一家合资企业,建立了一个名为Meg Snetor的新实体。两家公司期望新建的企业成为土耳其聚合物和化学分销市场的主要参与者。Mehmet Turhan Onur将填补董事总经理的角色。www.snetor.com https://megpolymers.com
颜色可以唤起我们对童年、大自然的壮丽、文化根源或人类辉煌的回忆。自史前时代以来,人类就着迷于将颜色应用于日常物品,为它们赋予坚实的文化和象征意义。如今,颜色可以统一和划分、象征和物化、编码和简化,所有这一切都归功于颜料、具有无机或有机成分、天然或合成的材料,这些材料在科学研究和实际应用中引起了极大的兴趣。对颜料的化学和物理行为及其所经历的修改、改变和相互作用的了解基于使用最常见技术进行的研究和调查的结果,这些技术是通过侵入性或非侵入性分析进行的,这些分析是在现场或实验室环境中应用的,例如光谱学、比色法、X 射线衍射法、荧光分析、扫描电子显微镜 (SEM)、透射电子显微镜 (TEM)、基于质谱的技术,但也通过专门开发的创新技术。
摘要:微生物色素具有许多具有出色特征的结构和功能,例如可生物降解,无毒且对生态友好,构成了重要的颜料来源。工业生产提出了限制大规模商业化的生产成本的瓶颈。但是,由于其健康优势,微生物色素正在逐渐流行。使用行业副产品开发代谢工程和降低生物处理的成本为所有生产阶段的成本和质量提高开辟了可能性。因此,我们正在解决与微生物色素有关的几个点,包括发现的主要类别和结构,使用的优势,不同工业领域的生物技术应用,它们的特征及其对环境和社会的影响。
奇异球菌能够在高辐射、极端温度和干燥等恶劣环境中生存,主要归因于其能产生独特的色素,尤其是类胡萝卜素。尽管这些细菌产生的天然色素数量有限,限制了它们的工业潜力,但代谢工程和合成生物学可以显著提高色素产量,扩大其应用前景。在本研究中,我们回顾了与这些色素相关的关键酶和基因的性质、生物合成途径和功能,并探索了通过基因编辑和优化培养条件来提高色素产量的策略。此外,研究还强调了这些色素在抗氧化活性和抗辐射性方面的独特作用,特别强调了奇异球菌中脱黄素的关键功能。未来,奇异球菌细菌色素将在食品工业、药物生产和太空探索中具有广阔的应用前景,它们可以作为辐射指示剂和天然抗氧化剂,保护宇航员在长期太空飞行中的健康。