版权所有©2023 Christiansen等。这是根据Creative Commons Attribution 4.0国际许可条款分发的开放访问文章,只要将原始工作正确归因于任何媒介,它允许在任何媒介中进行无限制的使用,分发和复制。
该计划意味着微软全力以赴地分享这项研究的环境效益故事。微软在澳大利亚和北美的创意和传播团队通过一项活动扩大了这些成功案例,该活动使该项目中已经涉及的传播能力增加了许多倍,这些传播能力是通过 Hub、CSIRO 和 APN Cape York 进行的。微软总裁布拉德·史密斯甚至在 LinkedIn 上分享了这个故事。微软的社交媒体活动已入围 Mumbrella CommsCon 最佳自有媒体使用奖。
背景:异种抗原是种间异种移植成功的主要问题。GGTA1 编码 α 1,3-半乳糖基转移酶,该酶对半乳糖基-α 1,3-半乳糖的生物合成至关重要,而半乳糖是导致超急性排斥的主要异种抗原。因此,GGTA1 修饰猪是猪对人异种移植的有希望的供体。在本研究中,我们开发了一种通过电穿孔将 CRISPR/Cas9 系统引入体外受精猪受精卵以生成 GGTA1 修饰猪的方法。结果:我们设计了五种针对 GGTA1 中不同位点的向导 RNA (gRNA)。通过电穿孔将 Cas9 蛋白与每一种 gRNA 一起引入后,评估了受精卵发育成的囊胚中的基因编辑效率。使用基因编辑效率最高的 gRNA 生成 GGTA1 编辑猪。在用 Cas9/gRNA 复合物转移电穿孔受精卵后,两头受体母猪产下六头仔猪。深度测序分析显示,六头仔猪中有五头在 GGTA1 的目标区域携带双等位基因突变,没有脱靶事件。此外,用异凝集素 B4 染色证实了 GGTA1 双等位基因突变猪的 GGTA1 功能缺陷。
摘要:正常的睾丸发育确保精子发生过程,这是一个复杂的生物学过程。生命中精子发生的持续高生产率主要归因于精子干细胞的恒定增殖和分化(SSC)。SSC的自我更新和分化过程严格由SSC利基市场调节。因此,了解SSC的发育模式对于精子发生至关重要。Shaziling Pig是一种起源于中国中部的中型土著猪品种。它以其出色的肉质和早期男性性成熟而闻名。公猪的精子生成能力对猪工业具有很大的经济意义。为了研究睾丸发育,尤其是Shaziling Pig中SSC发育的模式,我们使用了单细胞转录组学在三个关键的产后发育阶段的9个shaziling Pig Testes中识别82,027个单个细胞中82,027个单个细胞中的基因表达模式。我们产生了一个无偏的细胞发育地图集的睾丸睾丸组织。我们阐明了ssc在ssc的猪中涉及的复杂过程。特别是,我们确定了调节SSC自我更新和维持的电势标记基因和细胞信号传导途径。此外,我们提出了可用于SSC的潜在新型标记基因,这些基因可用于SSC隔离和分类。我们的研究增强了对SSC的发展的理解,并为繁殖摇摇欲坠的猪提供了宝贵的参考。此外,通过使用标记蛋白(UCHL1和试剂素)对不同发育年龄的睾丸组织的免疫荧光染色,对Shazziling Pigs的精子的发育模式进行了深入研究。
对手术切口产生的疤痕外观的担忧仍然是投资微创手术的主要动机。在某些医学情况下,需要开放手术程序,因此继续需要减少手术后皮肤疤痕。与临床标准手术刀叶片相比,该项目旨在确定高度抛光的手术手术刀叶片是否会减少组织损伤,随后的炎症和疤痕。使用Duroc Pig手术切口模型比较抛光标准的商业手术叶片在三个级别增强的表面饰面到市售叶片的疤痕。在各个时间点(第5天,第30天和第60天)比较了组之间疤痕形成(区域和宽度)的差异。在每个术后时间点,抛光的叶片显示出明显小的疤痕面积(P <0.05),比相应的对照组(Bard-Parker#15叶片)。此外,我们观察到的抛光叶片的疤痕宽度和宽度方差明显小于第60天(p <0.05)。这种作用的解释与由精细过程产生的手术刀叶片引起的减少组织创伤有关。数据支持以下假设:从极其完成的叶片中的手术切口导致疤痕大大减少。
用于农业和生物医学应用的基因编辑猪通常使用体细胞核移植 (SCNT) 生成。然而,SCNT 需要使用单克隆细胞作为供体,而耗时费力的单克隆选择过程限制了大批基因编辑动物的生产。在这里,我们开发了一种快速有效的方法,称为 RE-DSRNP(报告 RNA 富集双 sgRNA/CRISPR-Cas9 核糖核蛋白),用于生成基因编辑供体细胞。 RE-DSRNP利用双sgRNA精准高效的编辑特点和报告RNA富集的RNP(CRISPR-Cas9核糖核蛋白)高编辑效率、低脱靶、无转基因、低细胞毒性的特点,无需筛选单克隆细胞,将供体细胞的生成时间从3-4周大大缩短至1周,同时也降低了供体细胞凋亡和染色体非整倍体的程度。我们应用RE-DSRNP技术生产了带有野生型p53诱导的磷酸酶1(WIP1)基因缺失编辑的克隆猪:在32头断奶克隆猪中,31头(97%)携带WIP1编辑,15头(47%)为设计片段缺失纯合,未检测到脱靶事件。 WIP1 基因敲除 (KO) 猪表现出雄性生殖障碍,这说明 RE-DSRNP 可用于快速生成精确编辑的动物,用于功能基因组学和疾病研究。RE-DSRNP 在大型动物中的强大编辑性能以及其显著缩短的 SCNT 供体细胞生成所需时间,为其在快速生成无转基因克隆动物种群中的应用前景提供了支持。
摘要:猪被称为主要的弯曲杆菌储层。弯曲杆菌病是人类中最常见的胃肠道疾病,主要是由于禽肉的食用而引起的,对猪肉的作用知之甚少。猪通常与c有关。大肠杆菌,包括抗菌抗性分离株。因此,必须将整个猪肉生产链视为抗菌抗菌c的重要来源。大肠杆菌。 这项研究旨在确定弯曲杆菌属的抗菌素耐药性。 在五年的时间内,从爱沙尼亚屠宰场的捕获猪的盲肠样品中分离出来。 弯曲杆菌的比例为52%。 将所有弯曲杆菌分离株鉴定为c。 大肠杆菌。 高比例的分离株对大多数研究的抗菌剂具有抗性。 对链霉素,四环素,cipro bloffro oxacin和nalidixic酸的抗性分别为74.8%,54.4%,34.4%和31.9%。 此外,分离株的高比例(15.1%)具有多种耐药性,总共93.3%对至少一种抗菌剂具有抵抗力。大肠杆菌。这项研究旨在确定弯曲杆菌属的抗菌素耐药性。在五年的时间内,从爱沙尼亚屠宰场的捕获猪的盲肠样品中分离出来。弯曲杆菌的比例为52%。将所有弯曲杆菌分离株鉴定为c。大肠杆菌。 高比例的分离株对大多数研究的抗菌剂具有抗性。 对链霉素,四环素,cipro bloffro oxacin和nalidixic酸的抗性分别为74.8%,54.4%,34.4%和31.9%。 此外,分离株的高比例(15.1%)具有多种耐药性,总共93.3%对至少一种抗菌剂具有抵抗力。大肠杆菌。高比例的分离株对大多数研究的抗菌剂具有抗性。对链霉素,四环素,cipro bloffro oxacin和nalidixic酸的抗性分别为74.8%,54.4%,34.4%和31.9%。此外,分离株的高比例(15.1%)具有多种耐药性,总共93.3%对至少一种抗菌剂具有抵抗力。
这项研究的目的是研究饮食补充芽孢杆菌的影响(B.)淀粉菌对断奶猪的生长性能,腹泻,全身免疫和肠道菌群的实验感染了F18肠毒素大肠杆菌(ETEC)。单独容纳50只断奶猪(7.41±1.35 kg bw),并随机分配给以下五种治疗方法之一:假控制(con-),Sham B. amyloliquefaciens(bam-)(BAM-),受到挑战的控制(con +),受到挑战的B. amyloliquefiquefaciens(B. amyloliquefiquefaciens)(BAM +)(BAM +)和挑战Carbadex(agp)(agp + carbadex)。实验持续了28天,适应7天,第一次ETEC接种后21天。ETEC挑战减少(P <0.05)猪的平均每日增益(ADG)。 与CON +,AGP +增强(p <0.05)ADG相比,而B. amyloliquefaciens的补充趋于(p <0.10),以将猪的ADG从接种后第0天增加到21天(PI)。 ETEC挑战在第7和21 pi上增加了(p <0.05)白细胞(WBC),而BAM +猪在第7天PI的WBC趋于较低(p <0.10),并且与CON +相比,在第21天PI的WBC较低(P <0.05)WBC。 与AGP +粪便菌群相比,BAM +在第0天的Lachnospileaceae的相对丰度较低(P <0.05),在第21 pie PI和梭状芽孢杆菌科的相对丰度较低(P <0.05),但较高(p <0.05)的相对丰度在0。ETEC挑战减少(P <0.05)猪的平均每日增益(ADG)。与CON +,AGP +增强(p <0.05)ADG相比,而B. amyloliquefaciens的补充趋于(p <0.10),以将猪的ADG从接种后第0天增加到21天(PI)。ETEC挑战在第7和21 pi上增加了(p <0.05)白细胞(WBC),而BAM +猪在第7天PI的WBC趋于较低(p <0.10),并且与CON +相比,在第21天PI的WBC较低(P <0.05)WBC。与AGP +粪便菌群相比,BAM +在第0天的Lachnospileaceae的相对丰度较低(P <0.05),在第21 pie PI和梭状芽孢杆菌科的相对丰度较低(P <0.05),但较高(p <0.05)的相对丰度在0。在回肠摘要中,BAM +中的香农指数高于AGP +中的div>。bray-curtis pcoa在第21 pi pi中从假猪与ETEC感染的猪收集的卵植物中显示了细菌群落组成的不同。但是,用BAM +中的猪的富度(p <0.05)的相对丰度更大,但在卵形 +猪中,放线菌和杆菌的相对丰度(p <0.05)的相对丰度低于AGP +中的猪。iLeal Digesta具有比BAM +中的Pig较高(p <0.05)的塞梭菌strictu stricto 1,但比猪更低(p <0.05)。总而言之,补充淀粉芽孢杆菌倾向于增加ADG,并且对ETEC感染的猪腹泻的影响有限。
摘要 沙门氏菌病是欧盟第二大常见的食源性人畜共患病,猪是这种病原体的主要宿主。养猪生产中的沙门氏菌控制需要采取多种措施,其中可通过接种疫苗来减少流行血清型(如鼠伤寒沙门氏菌血清型)的亚临床携带和脱落。减毒活疫苗株在增强细胞介导免疫和允许通过口服途径接种方面具有优势。然而,这些疫苗的主要缺点是对异源血清型的交叉保护作用有限,并且会干扰感染的血清学监测。我们最近表明,减毒沙门氏菌菌株 (ΔXIII) 在鼠感染模型中对鼠伤寒沙门氏菌具有保护作用。ΔXIII 菌株含有 13 条染色体缺失,这使得它无法产生 sigma 因子 RpoS 和合成环二鸟苷酸 (c-di-GMP)。在本研究中,我们的目标是测试 ΔXIII 菌株对猪的保护作用,并研究使用 ΔXIII 是否可以区分已接种疫苗的猪和已感染的猪。结果表明,在断奶前仔猪口服 ΔXIII 疫苗可减少断奶和屠宰时的粪便脱落和回盲淋巴结定植,从而交叉保护仔猪免受鼠伤寒沙门氏菌的攻击。接种疫苗的猪在断奶时既没有粪便脱落,也没有疫苗菌株的组织持续存在,从而确保屠宰时不存在 ΔXIII 菌株。此外,ΔXIII 菌株中缺乏 SEN4316 蛋白,这使得开发血清学测试成为可能,从而区分感染动物和接种疫苗的动物 (DIVA)。
SAN 功能障碍可能导致复杂且致命的心律失常 [11, 12],从而导致心房颤动和心力衰竭等心脏疾病,常导致晕厥和心源性猝死 [13, 14]。SAN 功能障碍的特征性体征包括持续性心动过缓、短暂或持续性窦性停搏以及心动过缓-心动过速综合征 [15, 16],可在人类心肌梗死 (MI) 急性期观察到 [17, 18]。 SAN 中的胶原网络可以为节点细胞、血管、神经纤维和其他类型的支持细胞提供结构支撑,从而稳定地连接节点的所有组成部分。这种胶原还可以为起搏细胞提供机械保护,防止周围心肌收缩引起的过度拉伸 [19]。健康人类 SAN 由 35%–55%