摘要宫颈癌是一种恶性肿瘤,可以传播(转移)向其他可能导致死亡的器官传播(转移)。根据全球癌症研究负担(Globocan),宫颈癌的主要原因中有95%是人乳头瘤病毒(HPV)。到目前为止疫苗接种是防止HPV感染的一种方法。类型的病毒(例如颗粒(VLP)病毒疫苗)与弱化病毒疫苗的类型不同。没有遗传物质,因此不能具有传染性和复制性,这是与使用活病毒在疫苗生产开发中使用的疫苗类型相比,这是潜在的VLP安全。在这项研究中,它更加专注于评估4个VLP VLP VLP设计模型嵌合HPV 18/45/59,这些模型已修改了LOOP,DE,EF,EF,FG,HI,HI具有免疫信息方法。结果表明,模型3疫苗的设计具有最佳,最安全的评估,包括抗原性(0.5284),物理化学特性(分子量为51.16 kDa,等电(PI)5.71和Grvy 0.358),并且疫苗没有引起过敏的反应和毒性。In addition, Model 3 vaccine candidates show significant immunogenicity, namely an increase in antigens on the 5th day, and began to decline on the 20th day, meaning that the body responds to the vaccine as an antigen marked by an increase in immunoglobulin M (IGM) and immunoglobulin G (IgG) which is 1.4 x 10 6 Count/ml长期。该结果表明,模型3具有用作有效且安全的疫苗的最大潜力。关键字:宫颈癌,人乳头瘤病毒(HPV),诸如粒子>的病毒
随着软件开发的复杂性的增加,增强开发人员的生产力已成为组织的关键重点。这项研究调查了AI驱动的代码完成工具Github Copilot对开发人员生产率的影响。通过采用混合方法方法,我们分析了调查和生产率指标的定量数据,以及来自各种经验水平的开发人员的访谈的定性见解。调查结果表明,GitHub Copilot可显着提高编码效率,减少日常任务的时间并通过智能建议提高代码质量。然而,还指出了诸如对AI生成的代码的依赖以及建议的偶尔不准确的挑战。这项研究有助于理解软件开发中的AI工具,从而强调了它们的潜在收益和局限性。对寻求利用AI技术提高生产力的开发人员和组织的影响以及未来研究的建议进行了讨论。
持续感染高危型人乳头瘤病毒 (HR-HPV) 以及随后的病毒癌蛋白 E6 和 E7 上调被认为是宫颈癌变中的关键分子事件 ( 1 , 2 )。这些癌蛋白会干扰关键宿主肿瘤抑制蛋白的功能,导致恶性转化。具体来说,E6 会促进 p53 的降解,p53 是一种对程序性细胞死亡至关重要的肿瘤抑制因子,而 E7 则会抑制通常调节细胞周期进程的视网膜母细胞瘤蛋白 (pRb) ( 3 , 4 )。p53 和 pRb 功能的破坏会导致染色体不稳定和癌症发展 ( 5 )。在各种 HR-HPV 类型中,HPV16 最为常见(其次是 HPV18),是全球 50% 以上宫颈癌病例的诱因 ( 6 – 8 )。 HPV 感染发生在宫颈上皮未分化的基底细胞中,病毒早期蛋白 E1、E2、E6 和 E7 在此细胞中表达水平较低(9)。随着被感染细胞的分化,病毒晚期蛋白 L1 和 L2 产生,用于衣壳的形成和病毒颗粒的组装。E4 蛋白通过与宿主细胞骨架结合协助病毒颗粒的释放(10,11)。高免疫原性的 L1 蛋白的产生受宿主蛋白和表观遗传修饰的调控,确保其仅在分化细胞中表达,从而逃避免疫检测(12)。HPV16 L1 蛋白及其相关 mRNA 在低度宫颈病变和增殖性感染中可检测到,但其缺失与高度病变高度相关(13,14)。虽然 L1 编码序列在转化细胞中保持完整,但衣壳蛋白不会合成(15)。尽管 HR-HPV 感染是宫颈癌的必要前兆,但只有一小部分感染者会发展为宫颈癌 ( 16 , 17 )。目前的 HPV DNA 检测不足以准确识别需要阴道镜检查的 HR-HPV 阳性女性,因为许多感染都是暂时性的 ( 18 )。目前建议对 HPV16 和 HPV18 进行基因分型,并结合细胞学检查进行宫颈癌筛查 ( 19 );然而,需要更特异的生物标志物来分类 HPV16 或 HPV18 阳性的女性,并减少不必要的阴道镜转诊 ( 20 , 21 )。宿主基因和 HPV 基因的甲基化已得到广泛研究,并被证实与宫颈异常有关 ( 22 , 23 )。甲基化修饰,例如 L1 基因内的 CpG 位点甲基化,可以控制该基因的表达,该基因在转化的宫颈细胞中经常被沉默。亚硫酸氢盐测序报告称 3' L1 基因区域的甲基化水平较高,表明其在控制 L1 表达方面具有潜在作用 ( 24 , 25 );然而,亚硫酸氢盐测序和直接测序等方法可能导致临床样本中甲基化水平估计不准确。焦磷酸测序,一种更准确的定量方法,已用于测量 HPV DNA 甲基化,揭示了各种 HPV 类型的 L1 和 L2 区域的高甲基化( 26 , 27 )。最近的研究表明,L1 基因甲基化可以区分宫颈上皮内瘤变 3 (CIN3) 和浸润性宫颈癌( 26 , 28 )。
1979 年,位于恩迪科特村的 IBM 制造厂向环境保护署报告了一起化学品泄漏事件,泄漏的化学品包括约 4,100 加仑挥发性有机化学品 (voc),包括三氯乙烯 (TCE)。IBM 在环境保护署的监督下,于 1982 年安装了 3 口抽水井,并开始从受污染的场地抽水和过滤水。泄漏事件发生后,恩迪科特村从 IBM 获得了一辆消防车,此后该村似乎对泄漏事件不再感兴趣。IBM 此后报告称,他们总共抽取了超过 80,000 加仑的挥发性有机化学品,因此显然污染程度远高于一次泄漏。出于环境保护署从未充分解释的某种原因,1986 年,该场地在该州的危险废物登记册上从 2 级(对公众构成威胁)降级为 4 级(结案)。直到 2004 年 1 月,在国会议员莫里斯·欣奇 (Maurice Hinchey) 的协助和公民团体的压力下,它才被正确地重新归类为 2 级。
实习飞行软件、计算机视觉和人工智能瑞士苏黎世公司:Daedalean 是一家总部位于苏黎世的初创公司,由前谷歌和 SpaceX 工程师创立,他们希望在未来十年内彻底改变城市航空旅行。我们结合计算机视觉、深度学习和机器人技术,为飞机开发最高级别的自主性(5 级),特别是您可能在媒体上看到的电动垂直起降飞机。如果您加入我们的实习,您将有机会与经验丰富的工程师一起工作,他们来自 CERN、NVIDIA、伦敦帝国理工学院或……自治系统实验室本身。您将构建塑造我们未来的尖端技术。最重要的是,我们还提供在瑞士阿尔卑斯山试飞期间加入我们飞行员的机会。项目:不同团队提供机会。我们想更多地了解您,以及如何让您的实习成为双方宝贵的经历。告诉我们你一直在做什么,以及你想在我们的团队中从事什么工作。它与深度学习有关吗?状态估计?运动规划?计算机视觉?或者别的什么?向我们展示你的热情所在。如果我们可以在你想从事的领域提供指导和有趣的机会,我们将一起敲定细节。资格: 强大的动手 C++ 证明解决问题的能力 如何申请: 将您的简历/履历发送至 careers@daedalean.ai 。请告诉我们一些关于您自己的信息,为什么您认为自己适合我们以及为什么我们适合您。
接受 PPG 的儿童的出勤率低于未接受 PPG 的学生,这是因为尽管有其他机构的干预和支持,少数家庭仍未定期出勤。差异为 2.4%,低于上一学年。我们还发现接受 PPG 的学生的持续缺勤率有所下降。减少了 1.5%。然而,接受和未接受 PPG 的学生在总体出勤率方面的差距已扩大到 3.7%,因为非 PPG 的出勤率上升得更快。在持续缺勤方面,差距为 21.6% 被确认有心理健康问题的儿童和家庭在学校表现良好,并且很快乐。
摘要 相关性。近年来,公共部门的资金流动在俄罗斯领土发展中的重要性日益增加。为了能够在区域层面分析所有公共部门的收入和支出,有必要制定考虑到所有财政资源流动的财务平衡表。研究目标。本研究的目的是以乌拉尔联邦区的六个地区为例,创建“一般治理”部门的财务平衡表。数据和方法。该研究基于国民账户体系的理论框架。作者提出了一种方法,根据国民核算中政府收入和支出的分类,对来自公开来源的官方统计报告进行合并。结果。提出的计算该地区所有预算的收入和支出(包括直接联邦支出额)的方法是基于比较增加值形成来源的数据。建立了2014-2018年乌拉尔联邦区各地区收入和支出数据库,并建立了2017年各地区“一般治理”部门财政收支矩阵。为此,确定了公共机构融资成本的结构和数额,并确定了乌拉尔联邦区的捐助方和受助方地区。结论。公共部门的财政资源以多种方式影响乌拉尔联邦区各地区的经济。专门从事石油和天然气生产的地区是该部门的净捐助方,其余地区无法自给自足,更多地依赖联邦资金。“一般治理”部门为车里雅宾斯克州和斯维尔德洛夫斯克州以及库尔干州创造了10%以上的GRP。结果可用于规划和预测某些地区的社会经济发展。