摘要简介甲基苯丙胺的使用障碍是全球公共卫生问题,没有批准的药物治疗。最近在美国进行的一项随机对照试验研究了安非他酮和纳曲酮的组合,全球不易获得。在这里,我们报告了一项试验方案,该方案是针对合并的纳曲酮和安非他酮组合的。方法和分析这项单臂开放标签的试点研究将评估甲基苯丙胺使用障碍的成年人中口服纳曲酮和安非他酮(每天40 mg/450 mg每天40 mg/450 mg)的安全性和可行性。参与者(n = 20)将是澳大利亚悉尼市中心医院的兴奋剂治疗计划的门诊病人。主要终点是第84天。参与者将参加从基线到第12周的每周学习访问,并在第16周进行后续电话访问。所有参与者都会照常接受治疗,例如社会心理疗法。主要结果是安全性(通过治疗急剧不良事件(AES)/不良反应衡量)和可行性(通过招募时间,不合格参与者的比例,研究和研究药物遵守的时间来衡量)。次要结果将评估甲基苯丙胺的使用,渴望和戒断;治疗目标和期望;身体和心理健康;抑郁和焦虑;和治疗满意度。定性访谈将评估干预和结果指标的可接受性。伦理和传播这项研究获得了圣文森特医院人类研究伦理委员会(2023/ETH00549)的伦理批准。结果将提交给同行评审的期刊和科学会议,并将创建视频摘要,以确保参与者和使用甲基苯丙胺的人可以访问这些发现。试验注册号ANZCTR:ACTRN12623000866606(协议v.2.1日期为2024年4月8日)。
比蒂吉姆 - 比辛肯根,2025年2月5日 - 从电动汽车到耳机:锂离子电池的需求在全球范围内增加。但是,为此所需的电极的产生是能量密集型的,涉及使用有毒溶剂。因此,Dürr正在用电池电池制造商Cellforce和美国LICAP打破新的地面。一起,这三个合作伙伴正在计划创新的试点厂,用于在基尔钦特林(Kirchentellinsfurt)(德国)的Cellforce的电极箔的干涂层。与传统的湿涂层相比,这项面向未来的技术在成本,能源消耗和CO 2排放方面具有显着优势。此外,这消除了对溶剂的需求。在产生电极时,将薄金属箔涂有由化学物质组成的阴极和阳极材料。今天,通常是使用湿材料和溶剂完成的。相比之下,在斯图加特附近的Kirchentellinsfurt建造的植物将与干材料一起使用。这将通过消除对干燥烤箱的需求,最多可节省40%的能源。同时,生产时间将减少约20%,而CO 2排放将减少约1吨每10千瓦时产生的电极容量。DürrAg首席执行官Jochen Weyrauch博士:“干涂层有可能使电池生产更加高效和可持续。我们期待继续与Durr和与Cellforce和Licap一起,我们将自己视为新技术及其在工业规模上使用的推动者。” Cellforce的CTOMarkusGräf博士和Heino Sommer博士:“我们看到LICAP激活的Dryode®技术在降低高性能细胞的内部电阻方面取得了显着的进展,最大程度地减少了空间需求并显着降低了CO 2排放和制造成本。
摘要 (英文) ................................................................................................................................................................ 1 摘要 (法文) ................................................................................................................................................................ 3 概述 ........................................................................................................................................................................ 5 第 1 章:参考书目 ...................................................................................................................................... 9 1.1. 可再生能源和储能资源的重要性 ...................................................................................................... 11 1.2 为什么选择液流电池 ............................................................................................................................. 18 1.2.1 铁铬液流电池 ............................................................................................................................. 20 1.2.2 溴/多硫化物液流电池 ............................................................................................................. 20 1.2.3 钒/溴 2 液流电池 ............................................................................................................. 21 1.2.4 锌/溴液流电池(混合液流电池) ............................................................................................. 21 1.2.5 锌/铈非水系液流电池(非水系) ................................................ 22 1.2.6 钒/铈氧化还原液流电池。(非水系) ...................................................................... 22 1.3. 为什么所有钒氧化还原液流 ...................................................................................................................... 23 1.4 与钒电解液相关的挑战 ...................................................................................................................... 24 1.4.1 膜 .................................................................................................................................................... 25 1.4.2 电解质 .................................................................................................................................................... 26 1.4.3 电极 .................................................................................................................................................... 27 1.4.3.1 热处理 ............................................................................................................................................. 29 1.4.3.2 化学处理 ............................................................................................................................................. 31 1.4.3.3 金属掺杂 ............................................................................................................................................... 33 1.4.3.4 电化学处理 ...................................................................................................................... 36 1.5 结论 .............................................................................................................................................. 38 第 2 章 通过使用 K 2 Cr 2 O 7 酸性溶液进行化学处理来增强全钒氧化还原液流电池(VRFB)用商业石墨毡的电化学活性 . ............................................................................................................................. 41 2.1 简介 ...................................................................................................................................................... 44 2.2.实验................................................................................................................................................................ 45 2.2.1 材料与化学品 ...................................................................................................................................... 45 2.2.2 电极活化 .............................................................................................................................................. 46 2.2.3 电极特性 ............................................................................................................................................. 46 2.2.4 半电池评估 ............................................................................................................................................. 48 2.3 结果与讨论 ............................................................................................................................................. 49 2.3.1 循环伏安法 (CV) 和处理参数优化 ............................................................................................. 49 2.3.1.1 用 K 2 Cr 2 O 7 溶液活化时温度的影响 ............................................................................. 51 2.3.1.2 用 K 2 Cr 2 O 7 溶液活化时时间的影响 ............................................................................. 52 2.3.1.3 在 140 o C 温度下持续时间的影响 ............................................................................................. 53 2.3.1.4 性能最佳的电极 ................................................................................................................ 54 2.3.2 线性扫描伏安法(LSV) .............................................................................................................. 56 2.3.3 表面特性 ............................................................................................................................. 58 2.3.3.1 扫描电子显微镜(SEM) ............................................................................................. 58 2.3.3.2 傅里叶变换红外光谱(FTIR) ............................................................................. 60 2.3.3.3 线性扫描伏安法(LSV)的表面分析 ............................................................................. 61 2.3.4 吸附位点的测定 ............................................................................................................................................................... 62 2.3.5 润湿性测试 ................................................................................................................................ 65 2.3.6 半电池评估 ................................................................................................................................ 68 2.4. 结论 ................................................................................................................................................ 73
摘要。自 2013 年以来,CEA 一直在运营一个名为 LHASSA 的中试级高压水蒸汽设施,该设施旨在测试潜热能存储模块,其运行条件类似于商用直接蒸汽发电 CSP 工厂。连接到该设施的相变材料 (PCM) 存储模块由铝翅片钢管组成,浸入硝酸钠中,并由铝插件包围以增强传热。本文介绍了对该存储模块进行第三次测试的结果,包括在各种运行条件下(固定滑动压力、完全和部分充电水平……)进行的 25 次充电-放电循环。存储测试部分的热性能显示出非常好的可重复性,与之前的测试活动相比没有任何性能下降。一些新的操作策略已成功测试(模拟太阳能场中云瞬变的充电中断、固定压力和变化质量流量的放电、充电-放电转换管理)。
适当性:副本的初始“用例”适合国库,但是,该产品不适合更复杂的任务。有4种最初针对副驾驶的用例:生成结构化内容,支持知识管理,合成和优先级信息以及执行过程任务(有关更多详细信息,请参见主要报告的附录D)。参与者的共识是这些用例适合国库环境,但是副驾驶不适合更复杂的任务,这主要是由于产品本身的局限性。参与者对市场上其他生成AI产品的功能表示担忧。员工也对需要透明度的需求尤其敏感,以确保对政府的公众信任的信任以及支持生成AI使用的准则,如果财政部采用副本或类似产品。
适用性:Copilot 最初的“用例”适用于财政部,但该产品并不适合执行更复杂的任务。Copilot 最初提出的用例有 4 个:生成结构化内容、支持知识管理、综合和优先处理信息以及执行流程任务(更多详情请参阅附录 D)。与会者一致认为,这些用例适用于财政部的情况,但 Copilot 并不适合执行更复杂的任务,这主要是由于产品本身的局限性。与会者对其相对于市场上其他生成式人工智能产品的功能性表示担忧。工作人员也特别关注透明度的必要性,以确保维护公众对政府的信任,以及如果财政部采用 Copilot 或类似产品,需要制定支持使用生成式人工智能的指南。
摘要Nordicway 3项目通过19个在芬兰,瑞典和挪威的城市和主要道路网络上进行的19个试点项目,涉及合作,连接和自动移动性(CCAM)。这些飞行员证明并测试了CCAM服务,重点是现实情况下的技术,基础设施和商业模式的开发。关键成就包括:•创新的CCAM飞行员:飞行员探索了城市,城市和高速公路环境,将交通操作与互联车辆相结合。服务使用的乘用车,重型货车,公共汽车和No-Madic设备,通过蜂窝及其G5通信连接。•技术进步:飞行员在北欧天气条件下提供了对操作设计域(奇数)要求的见解。道路网络和路面状况数据收集的自动化方法被证明更快,成本效益和用户友好。•协调和互操作性:所有服务都符合C-ROADS规范,促进了欧洲C-ITS服务的标准化。•利益相关者的合作与生态系统:国家和城市道路当局,电信提供商,车辆OEM和研究机构的参与促进了CCAM生态系统的创建。
政府计划的目的是将芬兰的研发支出提高到2030年GDP的4%目的是寻求具有挑战性的激进开放寻找新的创造性和未来的营销研究思想研究将解决该行业横截面中的主要未来挑战。已经确定了该想法的国际商业潜力,但尚未准确评估思考:研究解决了主要的未来挑战。
spinal cord injury Josep M. Font-Llagunes 1 Biomechanical Engineering Lab, Department of Mechanical Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain josep.m.font@upc.edu Urbano Lugrís Laboratory of Mechanical Engineering, University of La Coruña, MendizábalS/N,15403 FERROL,西班牙ulugris@udc.es daniel Clos Clos Biomegaronical Engineering Lab,机械工程与生物医学工程研究中心,Catalunya Universitatate politiatiatial.clos.clos.clos and Spain andiality formitial.clos.clos.clos and spo.clos和Extremadura大学工程,AVDA。de elvas s/n,06006 Badajoz,西班牙fjas@unex.es javier cuadrado实验室,机械工程实验室,LaCoruña大学,Mendizábals/n,15403 Ferrol,西班牙javier.cuadrado.cuadrado@udc.es@udc.es@udc.es@udc.es