我们报告了在5 nm厚的无定形无代数超导式RE X Zr(X≈6)(A-Rezr)薄纤维中,使用较小的型号的固定温度参数空间的形成,该区域在5 nm厚的无定形超导超导中的形成,使用较低的扫描型隧道隧道型仪表仪(STSSSS)组合。涡流液体的性质与常规液体显着不同。分析作为时间函数捕获的一系列STS图像,我们观察到,固定和干预互动的相互作用会产生非常不均匀的状态,其中一些涡旋保持静态,而另一些涡流则在其中形成旋转网络的旋转网络,而涡流是移动的。随着温度或磁场的升高,该网络变得更加密集,最终涵盖了所有涡流。我们的结果提供了对固定涡流液体的性质以及超薄超导薄膜运输特性中的某些特殊性的关键见解。
这是作者的同行评审并被接受的稿件。但是,一旦经过编辑和排版,记录的在线版本将与此版本不同。请引用本文 DOI:10.1063/5.0099201
这份国防部报纸是国防部成员授权出版物。《天际线》的内容不一定代表美国政府、国防部或密西西比州子午线海军航空站的官方观点或得到其认可。本出版物的编辑内容由子午线海军航空站公共事务办公室负责。《天际线》征集来自军事和民间来源的新闻投稿。它保留编辑选定传播材料的权利。材料提交截止日期为出版前周四下午 4:30。请将稿件寄送至:The Skyline, 255 Rosenbaum Ave., Suite 163, Public Af- fairs Office, Naval Air Station, Meridian, MS 39309-5003 或发送电子邮件至:penny.l.randall2.civ@ us.navy.mil 或 adam.w.prince.civ=@us.navy.mil。如需更多信息,请致电 (601) 679-2318 或 (601) 679-2809。本出版物中出现的任何广告(包括插页或补充内容)并不构成国防部或 NAS Meridian 对所宣传产品或服务的认可。本出版物中宣传的所有内容均可购买、使用或赞助,不考虑购买者、用户或赞助人的种族、肤色、宗教、性别、国籍、年龄、婚姻状况、身体残疾、政治倾向或任何其他非优点因素。
我们展示了一种在半导体微腔激光器中创建空间局部状态的实验方法。特别是,我们塑造了具有非共振的,脉冲的光泵的准二维微腔激光器的空间增益曲线,以创建由于增益和非线性损耗的平衡而存在的空间局部结构,称为增益拟散的孤子。我们直接探测了这些局部结构的超快形成动力学和衰减,表明它们是在比索秒时尺度上创建的,比激光腔孤子更快的数量级。使用复杂的Ginzburg – Landau模型来重建所有实验观察到的特征和动力学,该模型明确考虑了半导体中的载体密度动力学。
ESSN 1879-1050 出版商:Elsevier 注意:这是作者在《复合材料科学与技术》上接受发表的作品版本。出版过程导致的变更(例如同行评审、编辑、更正、结构格式和其他质量控制机制)可能不会反映在本文档中。自提交出版以来,本作品可能已作出更改。最终版本随后发表在《复合材料科学与技术》[174] (2019) DOI:10.1016/j.compscitech.2019.02.010 © 2019,Elsevier。根据 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International 许可 http://creativecommons.org/licenses/by-nc-nd/4.0/ 版权所有 © 和道德权利归作者和/或其他版权所有者所有。可以下载副本用于个人非商业研究或学习,无需事先许可或付费。未经版权所有者书面许可,不得复制或大量引用本项目。未经版权所有者正式许可,不得以任何方式更改内容或以任何格式或媒介进行商业销售。本文档是作者的印刷后版本,包含同行评审过程中商定的任何修订。已发布版本和此版本之间可能仍存在一些差异,如果您想引用已发布版本,建议您参考已发布版本。