1气候科学,意识和解决方案,哥伦比亚大学地球研究所,纽约,纽约,美国2罗马俱乐部荷兰俱乐部,‘S-Hertogenbosch,荷兰,荷兰3 NASA戈达德太空研究所,纽约,纽约,纽约,纽约州,纽约州,纽约州,美国,美国4号哥伦比亚大学地球研究所,纽约州哥伦比亚大学,纽约州,纽约州。 6 Mercator Ocean International, Ramonville St., -Agne, France 7 NASA Langley Research Center, Hampton, VA, USA 8 Department of Geosciences, University of AZ, Tucson, AZ, USA 9 Department of Geography and Atmospheric Science, University of KS, Lawrence, KS, USA 10 CSAS KOREA, Goyang, Gyeonggi-do, South Korea 11 Business Integra, Inc, New York, NY, USA 12中国北京,中国科学院大气物理学研究所13大气与海洋科学系,北京大学,北京大学物理学院
巴塞尔条件,2025年2月11日 - 诺华今天宣布,已签订协议,以获取一家位于波士顿的Anthos Therapeutics,Inc。,这是一家位于波士顿的私人私人,临床阶段的临床阶段生物制药公司,Abelacimab,Abelacimab,Abelacimab,Abelacimab,这是一家晚期医学,用于预防Streoke和系统性内胚型在患者中的发展。 这项交易应遵守习惯结束条件,完全符合诺华的增长战略和治疗领域的重点,从而利用了公司在心血管领域的实力和专业知识。 由黑石生命科学和诺华于2019年推出的Anthos Therapeutics通过诺华的许可,通过临床开发推进了Abelacimab。 abelacimab是一种新型,高度选择性的,完全人类的单克隆抗体,旨在通过因子XI抑制因子诱导有效的止血抗凝。 第2阶段的数据显示,服用阿贝拉西单抗的患者的出血事件显着降低,而心房颤动患者(杜鹃花1,2)的患者与护理标准的直接抗凝剂标准相比。 3阶段3临床试验正在进行中,患有动脉和静脉血凝块的患者,其中一名是心房颤动(淡紫色-TIMI 76 3)的患者,两项患者在癌症相关的血栓形成(Aster 4)和(木兰5)中。 “我们很高兴联手推进阿贝拉西单抗的发展,阿贝拉基莫比(Abelacimab)是一种潜在的第一类治疗方法,可以预防心房颤动以及癌症与癌症的血栓形成。” 2022年9月也获得了快速的巴塞尔条件,2025年2月11日 - 诺华今天宣布,已签订协议,以获取一家位于波士顿的Anthos Therapeutics,Inc。,这是一家位于波士顿的私人私人,临床阶段的临床阶段生物制药公司,Abelacimab,Abelacimab,Abelacimab,Abelacimab,这是一家晚期医学,用于预防Streoke和系统性内胚型在患者中的发展。这项交易应遵守习惯结束条件,完全符合诺华的增长战略和治疗领域的重点,从而利用了公司在心血管领域的实力和专业知识。由黑石生命科学和诺华于2019年推出的Anthos Therapeutics通过诺华的许可,通过临床开发推进了Abelacimab。abelacimab是一种新型,高度选择性的,完全人类的单克隆抗体,旨在通过因子XI抑制因子诱导有效的止血抗凝。第2阶段的数据显示,服用阿贝拉西单抗的患者的出血事件显着降低,而心房颤动患者(杜鹃花1,2)的患者与护理标准的直接抗凝剂标准相比。3阶段3临床试验正在进行中,患有动脉和静脉血凝块的患者,其中一名是心房颤动(淡紫色-TIMI 76 3)的患者,两项患者在癌症相关的血栓形成(Aster 4)和(木兰5)中。“我们很高兴联手推进阿贝拉西单抗的发展,阿贝拉基莫比(Abelacimab)是一种潜在的第一类治疗方法,可以预防心房颤动以及癌症与癌症的血栓形成。”2022年9月也获得了快速的“欢迎Anthos Therapeutics增强了我们在心血管空间中的重点,并补充了我们改变生活治疗,全面的临床计划和战略合作的组合,从而帮助全球成千上万的心脏病患者。” 2022年7月,阿贝拉西姆(Abelacimab)从FDA获得了快速轨道名称,用于治疗与癌症相关的血栓形成。
脑成像数据的分析需要复杂的处理流程来支持有关脑功能或病理的发现。最近的研究表明,分析决策的变化、少量噪音或计算环境可能会导致结果的巨大差异,从而危及结论的可信度。我们通过使用蒙特卡罗算法引入随机噪声来检测结果的不稳定性。我们评估了连接组的可靠性、其特征的稳健性以及对分析的最终影响。结果的稳定性范围从完全稳定(即所有数据位都有效)到高度不稳定(即 0-1 个有效数字)。本文强调了利用大脑连接估计中诱导的方差来减少网络偏差的潜力,同时不影响可靠性,同时提高其在个体差异分类中的应用的稳健性和潜在上限。我们证明,稳定性评估对于理解脑成像实验固有的误差是必要的,以及如何将数值分析应用于脑成像和其他计算科学领域的典型分析工作流程,因为所使用的技术与数据和上下文无关,并且具有全局相关性。总体而言,虽然由于分析不稳定性导致的结果极端多变可能会严重妨碍我们对大脑组织的理解,但它也为我们提供了提高研究结果稳健性的机会。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
*在管道和销售产品之间使用的方式。模态是指治疗剂的结构模板。** Ordesekimab,以前为AMG 714,也称为PRV-015,正在与Sanofi公司Provention Bio合作开发。为了合作,Provention Bio进行了临床试验,并领导了该计划的某些发展和监管活动。本管道提供了公司的候选产品的选择,旨在证明该公司对患者寻求治疗治疗严重疾病的承诺的范围。我们根据对公司的重要性进行定期报告中的选择,以及我们对10-K表格的年度报告还包括针对那些被选为定期申请的3阶段产品候选者的年度活动摘要。除非另有说明,否则我们将截至2025年2月4日提供此信息,并明确否认更新任何提供的信息的责任。Amgen的产品管道随着时间的流逝而随着时间的流逝而发生变化,包括通过临床阶段发展到许可和市场,返回战略合作伙伴,获得许可或在临床试验中失败以证明有效性,安全性或由于开发过程的性质而表现出可行的产品。此描述包含涉及重大风险和不确定性的前瞻性陈述,包括在Amgen最近的10-K表格中讨论的陈述以及Amgen关于表格10-Q和8-K表格的定期报告中,实际结果可能会有所不同。Amgen将在上述日期提供此信息,并且不承担任何义务,以更新本表中包含的任何前瞻性陈述,这是由于新信息,未来事件或其他方式。
RG6421 TMEM16A 增效剂 粘膜阻塞性呼吸道疾病 RG7828 Lunsumio SLE CHU 抗 HLA-DQ2.5 x 麸质肽 乳糜泻 CHU 抗 C1s 免疫学 RG6237 抗潜伏性肌生长抑制素 (GYM 329) 肥胖症 RG6652 GLP-1 RA (CT-996) 肥胖症 +/- T2D RG6035 Brainshuttle™ CD20 多发性硬化症 RG6182 MAGL 抑制剂 多发性硬化症 RG6434 - 神经退行性疾病 RG6120 zifibancimig nAMD RG6209 - 视网膜疾病 RG6351 - 视网膜疾病 RG7921 - RVO RG6006 zosurabalpin 细菌感染 RG6436 LepB 抑制剂 复杂性尿路感染 CHU REVN24 急性疾病 CHU BRY10 慢性疾病
本次竞赛旨在识别故意生产和/或释放生物有机体的特征。技术方法有可能识别样本中的生物体是否具有实验室传代/生长的表型证据(例如在表观遗传学、转录组学、蛋白质组学水平上)。先前的研究强调了这种分析技术在调查生物材料滥用方面的潜力(1、2)。为了识别可靠的特征,供应商应考虑使用环境菌株(即之前很少或没有实验室培养的菌株)进行传代实验。预计在实验室传代实验中,经过相对较少的培养“代”后(即在反复传代不到 10 次后出现)即可识别出特征。
植物病毒对全球农业构成了重大威胁,并需要有效的工具才能及时检测。我们提出了AutoPvprimer,这是一种创新的管道,该管道整合人工智能(AI)和机器学习以加速植物病毒引物的发展。管道使用Biopython从NCBI数据库自动检索不同的基因组序列,以增加后续引物设计的鲁棒性。design_-primers_with_tuning模块使用随机森林分类器,可优化参数并为不同的实验条件提供灵活性。质量控制措施,包括评估Poly-X含量和熔化温度,提高了引物的可靠性。AUTOPVPRIMER独有的是Visualize_primer_dimer模块,它支持引物二聚体的可视化评估,这是其他工具中缺少的功能。引物特异性通过引物爆炸验证,这有助于管道的整体效率。AutoPvprimer已成功地应用于番茄镶嵌病毒,证明其适应性和效率。模块化设计允许用户自定义,并将适用性扩展到不同的植物病毒和实验场景。管道代表了引物设计的重大进展,并为研究人员提供了加速分子生物学实验的有效工具。未来的发展旨在扩展兼容性并纳入用户反馈,以巩固AutoPvprimer,作为对生物信息学工具箱的创新贡献,也是提高植物病毒学研究的有希望的资源。
SESAR JU 的数字欧洲天空研究和创新计划利用最新的数字技术(“SESAR 解决方案”)来提高空中交通管理的自动化、网络安全数据共享和连通性水平,并实现其基础设施和空中交通服务在所有类型空域(包括超低空和高空运行)的虚拟化。通过这样做,这些技术使系统变得更加可扩展和灵活,同时增强了对中断、交通需求变化和飞行器多样性的适应能力。这些属性都是以智能和可持续的方式为系统提供未来保障的关键。
Yash Patel 1,2,3*,Chenghao Zhu 1,2*,Takafumi N. Yamaguchi 1,2,3*,Nicholas K. Wang 1,2,Nicholas Wiltsie 1,2,3 Mohammed Faizal Eeman Mootor 1,2,3 , Timothy Sanders 1,2,3 , Cyriac Kandoth 1,2 , Sorel T. Fitz-Gibbon 1,2,3 , Julie Livingstone 1,2,4 , Lydia Y. Liu 1,2,4 , Benjamin Carlin 1,2,3 , Aaron Holmes 1,2 , Jieun Oh 1,2 , John Sahrmann 1,2 , Shu Tao 1,2,3 , Stefan Eng 1,2 , Rupert Hugh- White 1,2 , Kiarod Pashminehazar 1,2 , Andrew Park 1,2 , Arpi Beshlikyan 1,2 , Madison Jordan 1,2 , Selina Wu 1,2 , Mao Tian 1,2 , Jaron Arbet 1,2 , Beth Neilsen 1,2 , Yuan Zhe Bugh 1,2,Gina Kim 1,2,Joseph Salmingo 1,2,Wenshu Zhang 1,2,Roni Haas 1,2,Aakarsh Anand 1,2,Edward Hwang 1,2,Anna Neiman-Golden 1,2,Anna Neiman-Golden 1,2,Philippa Steinberg 1,2,Wenyan Zhao 1,2 Boutros 1,2,3,4,5,§