本文介绍了一种具有新颖像素结构的自供电异步传感器。像素是自主的,可以独立收集或感应能量。在图像采集过程中,一旦像素感应到其局部照明水平,它们就会切换到收集操作模式。使用所提出的像素架构,大多数发光像素都会为传感器提供早期供电,而低照度像素则会花费更多时间感应其局部照明。因此,等效帧速率高于传统自供电传感器提供的帧速率,后者在独立阶段收集和感应照明。所提出的传感器使用首次尖峰时间读数,允许在图像质量和数据与带宽消耗之间进行权衡。该设备具有动态范围为 80 dB 的 HDR 操作。像素功耗仅为 70 pW。本文详细介绍了传感器和像素的架构。提供并讨论了实验结果。传感器规格与现有技术进行了对比。
大多数核医学成像系统将其信息呈现为数字图像。数字图像以计数值数组或矩阵的形式存储在计算机中,并通过分配取决于每个元素中的计数数量的灰度或颜色标度来显示。通常(但不完全是),数组是方阵,尺寸范围从 32 x 32 到 1024 x 1024,尽管大多数核医学图像的尺寸为 64 X 64、128 X 128 或 256 X 256 (1,2)。每个矩阵元素(通常称为像素)都是计算机内存中的一个位置。64 x 64 矩阵有 4096 个像素,而 128 x 128 矩阵是其四倍大(16,384 个像素),256 x 256 矩阵是其十六倍大(65,536 个像素)。一个像素中可以存储的计数数量取决于分配的位数。由于计算机的设计方式,最方便的方式是分配 ei-
摘要我们演示了超导的单光子检测器(SPD),这些检测器(SPD)在每个像素上本地集成了信号。通过超导纳米线SPD与Josephson Electronics的单片整合来实现此能力。动机是实现具有类似于CMOS传感器对应物的集成功能的超导传感器元素。像素可以以多种模式运行。首先,我们证明可以单独计数光子,每个检测事件添加了相同数量的超频率与集成元素。第二,我们演示了一个活动增益控制选项,其中可以动态调整每个检测事件的信号以说明可变光条件。此外,像素可以无限期地保留信号以记录在集成周期内发生的所有计数,或者像素可以在衰减时间常数中记录检测事件的褪色信号。我们描述了其他半导体读数电路,该电路将在以后的工作中使用,以实现与CMOS阵列读取体系结构兼容的超导SPD的可扩展的大型传感器阵列。
• 16 行,每行 8+8 像素 • 模拟 256 对 1 MUX • 4 位闪存 ADC • 3 条快速或线 • 局部偏置 • 屏蔽逻辑
我们提出了一种新的测量方法:相机信息容量,它以克劳斯·香农于 1948 年和 1949 年发表的开创性信息论著作 [1],[2] 为基础,该著作是现代电子通信的基础,但对成像科学家来说仍然陌生。香农表明,每个通信信道(可以用带宽和噪声来表征)都有一个信息容量,它决定了它在无错误传输数据的最大速率。相机就是这样一种通信信道,尽管有一点不同:它将数据传输到二维像素而不是一维时间。由于机器视觉背后的算法基于信息而不是像素,因此相机的信息内容对系统性能至关重要。
要为监督分类器创建培训数据,必须使用光栅和相关的ROI提取标记的像素。您将使用Envi机器学习ML培训数据从ROIS任务来创建培训数据。此任务将从.xml文件中指定的ROI识别的栅格中提取所有标记的像素。将创建一个包含单一光谱的新栅格。训练栅格的尺寸为(行= 1,列=输入栅格列,bands =输入栅格频段 + 1)。附加频段将提供每个像素的数字值,此数字值代表每个像素的类标签值。
科学互补的金属氧化物 - 氧化物 - 氧化型(CMOS)检测器近年来由于其低成本和高可用性而迅速发展。它们在电荷耦合设备(CCD)方面也具有一些优势,例如高帧速率或通常降低读数噪声。这些传感器在开发第一个反向释放模型后开始用于天文学。因此,值得研究他们的特征,优势和弱点。最广泛的CMOS传感器之一是Sony IMX系列中的CMOS传感器,这些传感器因其低成本而基于小型和快速望远镜的大型天文学调查项目,并且可以进行广泛和高效果调查的能力。在本文中,我们旨在表征IMX455M和IMX411M传感器,这些传感器分别集成到Qhy600和Qhy411摄像机中,以用于天文观测中。这些是大型(36×24和54×40 mm)的天然16位传感器,具有3.76μm像素,并且在光学范围内敏感。我们介绍了两个相机实验室表征的结果。他们显示出非常低的暗电流为0.011和0.007 e -px -1 s -1 @ 1 @ - 10°C,分别为qhy600和qhy411摄像机。它们还显示了温暖像素的存在,qhy600中约为0.024%,qhy411中的0.005%。温暖的像素被证明是稳定的,并且在曝光时间内是线性的,因此可以轻松地使用深色框架校正。受盐和胡椒噪声影响的像素约为总计的2%,并提出了纠正这种效果的方法。两个摄像头都附在夜间望远镜上,并进行了几次在天空测试以证明其功能。天上的测试表明,这些CMO的行为以及相似特征的CCD,并且(例如)它们可以达到一些Mili-Magnitudes的光度准确度。
条纹分割技术(FRIST):在这里,边界框中包含使用自适应阈值的预处理特征模式。然后在预处理图像的中心考虑具有单位半径的圆。该圆的半径迭代增加,直到达到边界框的末端为止(请参阅补充图S11)。从C扫描图像中,有关TSV的信息主要位于内部两个条纹。在每个步骤中,都绘制位于该圆圈周长的黑色像素的总数。图中的第一个峰和第二个峰对应于感兴趣的边缘,因此,通过将所有像素的所有像素设置为超过这两个峰,以保留图像段的那些区域(请参阅补充图S11和S12)。这些步骤是