摘要 . 过去五年来,印度尼西亚的海藻产量大幅下降了 3.55%,其中斯里布群岛地区的产量急剧下降,从 2018 年的 196 吨下降到 2022 年的 2 吨。了解支持海藻养殖的生物和环境参数,特别是微生物和浮游生物多样性,对于可持续生产至关重要。这项研究在 2023 年雨季(4 月至 5 月)和旱季(7 月至 8 月)期间在斯里布群岛的 1996 个养殖点对 Kappaphycus alvarezii (Doty) Doty ex PCSilva 进行了研究,涉及五个主要岛屿附近 12 个点的水质评估和生物采样。细菌群落的下一代测序 (NGS) 表明,Alphaproteobacteria,特别是红细菌科,在各个季节都占主导地位,而浮游动物在雨季占主导地位,浮游植物在旱季占主导地位。样本中没有有害藻类和致病细菌,表明海藻生长的环境总体上是安全的。虽然通过升高的油含量和叶绿素 a 检测到了一些人为污染,但总体水质被认为适合海藻养殖。研究结果表明,通过适当的管理来减轻污染,Kepulauan Seribu 地区仍具有可持续海藻养殖的强大潜力。关键词:宏基因组、细菌、浮游生物、Kepulauan Seribu、海藻养殖。
95 ℃ 30 秒、40 ℃ 30 秒、72 ℃ 30 秒,25 个循环,最后 72 ℃ 延伸 5 分钟。第一轮 PCR 产物用 AMPure XP 磁珠(Beckman-Coulter,印第安纳波利斯,印第安纳州,美国)纯化。在第二轮 PCR 中,取 2 µL 纯化的第一轮产物与 NexteraXT Indexed Primers 一起用于最终文库构建。循环条件包括初始变性步骤 95 ℃ 3 分钟,然后 10 个循环 95
根据IPCC气候变化2023综合报告,由于累积CO 2排放的升级,全球变暖预计将从2021年持续增加到2040年。即使在最低的温室气体排放情况下,也有更大的机会达到全世界的温度至1.5°C,这是工业化期之前的水平。在较高的排放情况下,温度可能会超过此阈值。增加的工业活动和城市化导致了CO 2的排放量更高,这被认为是导致世界气候和温度变化的主要温室气体[1]。碳固存是捕获大气二氧化碳并将其存储在长期碳储层中的过程,以防止其释放到大气中[2],以减轻全球变暖并避免气候变化[3]。二氧化碳是通过光合作用作为生物碳循环的一部分从生产者中隔离的[4]。
最近的北极气候变暖引起了北极海洋(AO)海冰厚度和范围的逐渐逐渐下降(Comiso等,2008; Kacimi&Kwok,2022; Kwok,2018; Laxon et al。 AO表面变暖趋势(Z. Li等,2022; Shu等,2022; Steele等,2008),主要是由于有据可查的气候变暖趋势(Rantanen等,2022)。然而,当前AO分层的空间和时间变化似乎不仅受海冰融化和海洋变暖的控制,而且还通过风和河流淡水径流的强度来控制(Hordoir等,2022年)。此外,即使是亚极区域(大西洋和太平洋)的水质量对流的变化也可以改变AO分层(Polyakov等,2020)。海冰融化和积聚的季节性周期强烈调节AO植物浮游生物的生命周期(Janout等,2016)。Kahru等。 (2010,2016)使用遥感观察结果表明,在近几十年以前的春季浮游植物布鲁姆(SPB)时,春季浮游植物的时机(SPB)的时机发生了,并假设这是由于气候变暖驱动的海冰的较早破裂所致。 在温带和高纬度海洋中,SPB通常开始其发育,这是由于水柱的季节性增加引起的光限制(Siegel等,2002)是由对流驱动的混合减少引起的(Mignot等人,2018年)。Kahru等。(2010,2016)使用遥感观察结果表明,在近几十年以前的春季浮游植物布鲁姆(SPB)时,春季浮游植物的时机(SPB)的时机发生了,并假设这是由于气候变暖驱动的海冰的较早破裂所致。在温带和高纬度海洋中,SPB通常开始其发育,这是由于水柱的季节性增加引起的光限制(Siegel等,2002)是由对流驱动的混合减少引起的(Mignot等人,2018年)。物理海洋的这些特定条件使海洋浮游植物可以在舒适的区域中度过足够的时间,从而提高了细胞的倍增率并超过其死亡率。这些环境条件即使在极地海洋中也可以触发SPB(Behrenfeld等,2017; Uchida等,2019),其中
fi g u r e 2上升后生阿尔法和β多样性模式。(a)在每个深度区域和采样位置,海洋后生动物门的相对读取丰度。(b)香农多样性指数(H')和(c)在所有四个深站组合的每个深度区域的SRS的物种丰富度标准化的Motus数据。Tukey的HSD成对比较与Tukey调整后的P值进行了比较。*表示<0.05的显着差异,****表示显着差异<0.001。(d)基于jaccard距离的Motus社区结构(K = 2)的非线性多维标度。颜色表示海洋区,点形表示站点,地块上显示的应力值。深度区域被定义为上皮(0-99 m),下层(100-200 m),中质质量(201-1000 m)和浴类质(> 1000 m)。
Acknowledgements ......................................................................................................................... iii Abstract .............................................................................................................................. iv List of Tables ..................................................................................................................... vi List of Figures .......................................................................................................................................................... vii
1 冲绳科学技术研究所研究生大学 (OIST) 基因组学和监管系统组,日本冲绳恩纳村 904-0495; 2 巴塞罗那大学 (UB) 遗传学系、微生物学和国家生物学系、生物学系,巴塞罗那 08028,西班牙; 3 巴塞罗那大学 (UB) 生物多样性研究所 (IRBio), 巴塞罗那 08028, 西班牙; 4 实验植物研究所植物结构与功能基因组学中心, 779 00 奥洛穆茨, 捷克; 5 卑尔根大学SARS国际中心,卑尔根N-5008,挪威; 6 卑尔根大学生物科学系,卑尔根 N-5020,挪威; 7 鹿儿岛大学理学院,鹿儿岛 890-0065,日本;8 大阪大学理学院生物科学系,丰中市,大阪 560-0043,日本
摘要。海洋色遥感已使用了20多年,以估计主要生产力。ap-aparaches,以基于空间的光谱数据为基于phyto-plankton群落结构,特别是当与光合色素的原位测量结合时。在这里,我们提出了一种新的海洋颜色算法,以得出七个浮游植物组的相对细胞丰度,以及它们对全球尺度上总叶绿素A(CHL A)的贡献。Our al- gorithm is based on machine learning and has been trained using remotely sensed parameters (reflectance, backscatter- ing, and attenuation coefficients at different wavelengths, plus temperature and Chl a ) combined with an omics-based biomarker developed using Tara Oceans data representing a single-copy gene encoding a component of the photosyn- thetic machinery that is present across all浮游植物,包括原核生物和真核生物。它不同于依靠诊断色素来推导浮游植物组的预先方法。我们的方法论提供了浮游植物社区结构的强大范围,该结构的相对细胞丰度和对总CHL浓度的贡献。新生成的数据集产生的有关植物粉的不同方面的信息 -
本文是根据Creative Commons归因4.0国际许可证的许可,该许可允许以任何媒介或格式的使用,共享,适应,分发和复制,只要您适当地归功于原始作者和来源,就可以提供与Creative Commons许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。
Pharma Innovation Journal 2023; SP-12(12):1290-1295 ISSN(E):2277-7695 ISSN(P):2349-8242 NAAS评级:5.23 TPI 2023; SP-12(12):1290-1295©2023 TPI www.thepharmajournal.com接收到:03-11-2023接受:08-12-2023 Omkar Saahu渔业钓鱼Dholi钓鱼学院Dholi,Muzaffarpur,Muzaffarpur,Bhirapur,Bhirapur,Bhirapur,Bihhar Basan Basan Basan Basan晚。 div>Shri Punaram Nishad渔业学院Kawardha,Kabirdham,Chhattisgarh,印度Vidyabhooshan晚。 div>Shri Punaram Nishad渔业学院Kawardha,Kabirdham,Chhattisgarh,印度Uma Date。 div>Shri Punaram Nishad渔业学院Kawardha,Kabirdham,Chhattisgarh,印度Lukesh Kumar Banjare晚。 div> Shri Punaram Nishad渔业学院Kawardha,Kabirdham,Chhattisgarh,印度,通讯作者:Basant Singh晚。 div> Shri Punaram Nishad渔业学院Kawardha,Kabirdham,Chhattisgarh,印度Shri Punaram Nishad渔业学院Kawardha,Kabirdham,Chhattisgarh,印度Lukesh Kumar Banjare晚。 div>Shri Punaram Nishad渔业学院Kawardha,Kabirdham,Chhattisgarh,印度,通讯作者:Basant Singh晚。 div> Shri Punaram Nishad渔业学院Kawardha,Kabirdham,Chhattisgarh,印度Shri Punaram Nishad渔业学院Kawardha,Kabirdham,Chhattisgarh,印度,通讯作者:Basant Singh晚。 div>Shri Punaram Nishad渔业学院Kawardha,Kabirdham,Chhattisgarh,印度