我们研究一家公司工厂的数量、规模和位置。公司的决策权衡了使用多家工厂向客户提供商品和服务的好处、建立和管理这些工厂的成本以及随着工厂数量的增加而产生的相互蚕食的可能性。在一个拥有大量不同地点的经济体中,对异质性公司的决策进行建模是复杂的,因为它涉及一个大型组合问题。利用离散几何的见解,我们研究了这个问题的一个可处理的极限情况,其中这些力量在局部层面上起作用。我们的分析对跨空间排序提供了清晰的预测。与生产率较低的公司相比,生产率高的公司在租金高的密集地点设立更多的工厂,而在密度低、租金低的市场设立的工厂较少。控制工厂数量,生产率高的公司运营的工厂也比生产率低的公司运营的工厂更大。我们使用美国机构级别的数据提供了与这些和其他几个预测一致的证据。
将外国基因从无关来源转移到植物中,并表达它们有助于产生不同的转基因植物。植物在基因工程上赋予了抗昆虫,病毒,除草剂和其他环境压力的抗药性。产生抗昆虫的植物的主要策略之一是据植物中苏云金芽孢杆菌的有毒哭泣蛋白的表达。植物中病毒涂料蛋白的表达产生的抗性病毒感染。植物中超氧化物歧化酶和甜菜碱的产生产生了有效的保护侵害盐胁迫。GOX和突变体EPSPS基因与农杆菌菌株CP4的联合表达产生了非常高的草甘膦对植物的耐植物耐受性。反义技术也可以用于生产缓慢的成熟番茄水果。也可以通过改变氨基酸,脂质,维生素和铁含量来增强作物的营养含量。可以增加氨基酸含量,可以修改脂质成分,以适合油的预期用途,合成维生素E的途径以及维生素A的前体。遗传操作阻止了马铃薯的变色,某些植物的甜味也得到了增强。植物已经过基因修饰,以作为商业和药品诸如生物塑料和抗体的商业和药品大规模生产的工厂。已开发了转基因植物作为疾病治愈的可食用疫苗,这种方法可能有助于生产许多新的,有效和廉价的疫苗。
摘要 随着测序技术的快速发展和随之而来的测序成本的降低,大量观赏植物被完成了测序,其基因组研究也从基因克隆和标记开发转向全基因组分析。在全基因组水平上深入了解基因组的结构和功能,不仅有助于通过基因工程改造观赏植物的香气、颜色和花形等性状,还可以通过比较基因组学分析推断观赏植物的亲缘关系和进化历史。本文综述了测序策略的现状以及基因组学在观赏植物起源和进化研究中的应用,并指出了观赏植物基因组学研究面临的挑战。利用基因组学、基因编辑和分子设计聚合育种等前沿技术,可以促进我们了解观赏植物重要性状的遗传调控机制和种质创新,有望大幅提高观赏植物的育种效率。
植物生物多样性和分类学领域的MSC计划是自1992年以来一直在运行的良好课程。它是由于皇家植物园爱丁堡(RBGE)的独特伙伴关系,这是一个领先的分类研究与植物保护中心与世界顶尖大学之一的爱丁堡大学(UOE)之间的独特伙伴关系。植物园的设置非常适合该计划的目的,在提供非凡的生活和植物标本室,综合图书馆,实验室空间以及全球范围的专业知识。rbge具有独特的学习环境,强大的教育部门将科学与园艺联系起来。在爱丁堡充满活力的城市时,在RBGE学习生物多样性是对植物着迷的人们的极好机会。
创建自己的口袋草原,孩子们可以帮助重新创建本地植物和野生动植物的食物和栖息地。。休斯顿·奥杜邦(Houston Audubon)为所有年龄段的人提供编程和活动,并着重于本地物种保护。