编辑的书对植物适应非生物胁迫的最新知识进行了有关最新知识的全面更新。它深入探究了ROS和抗氧化剂的代谢,突出了它们在生理,生化和分子过程中的复杂关系。章节关注当前的气候问题以及ROS代谢如何与抗氧化剂系统相互作用以加速排毒机制。这种理解对于寻求开发耐受性作物的农业科学家至关重要,这些农作物在不断变化的环境条件下实现可持续性。非生物压力因素对农作物产量的日益威胁导致人们迫切需要了解其对植物性能的影响以及它们影响植物的机制。显然,这些压力在每个阶段对植物的生长和发育产生负面影响,而过量的ROS产生是这种负面影响的关键因素。但是,植物能够通过诱导抗氧化剂系统作为优先级来应对不利影响。已经确定了ROS的双重作用,以浓度依赖性方式对植物代谢的调节提供了证据。在高ROS产生的条件下,抗氧化剂系统在减少ROS的作用方面起着重要作用。因此,ROS产生和抗氧化剂系统与非生物应力条件交织在一起,抗氧化剂在代谢中保持稳定性,以避免由于环境干扰而破坏。此外,它涉及抗氧化剂和ROS在植物 - 微生物相互作用中的作用。这本书由菲律宾国际赖斯研究所的博士后研究员M. Iqbal R. Khan博士编辑,他发表了35篇经过同行评审的研究文章,并为各种书籍做出了贡献。纳菲斯·A·汗(Nafees A.植物抗氧化系统(AOS)通过抵消反应性物种,尤其是活性氧(ROS)来维持细胞内稳态,在维持细胞内的稳态中起着至关重要的作用。AOS由诸如谷胱甘肽 - 抗坏血酸周期,酚类化合物和亲脂性抗氧化剂(如类胡萝卜素和生育酚)组成。这些成分合作,提供了积极的还原形式的更好的保护和再生,从而使压力的植物能够在H2O2浓度与动物细胞寿命不相容的H2O2浓度下生存。文本参考了有关抗氧化剂,氧化损伤和植物中氧气剥夺应激等主题的各种科学研究和文章。提到了特定机制,例如水 - 水周期和ASC-GSH循环,这些机制有助于植物应对压力。文本还讨论了重金属如何在植物中诱导活性氧(ROS),从而导致植物毒性和物理化学变化。它突出了各种酶和非酶,这些酶有助于植物适应压力条件。作者特别关注基因表达和技术用于研究植物防御的技术。The references cited include studies on various topics, such as: * Antioxidant machinery in crop plants * Phytotoxicity and physicochemical changes in plants exposed to heavy metals * Plant responses to abiotic stresses, including heavy metal-induced oxidative stress and protection by mycorrhization * Plants' oxidative response to nanoplastics * The effect of novel biotechnological vermicompost on tea yield and plant营养含量文本还参考了一些评论文章,包括讨论: *作物植物中非生物胁迫耐受性中的活性氧和抗氧化剂机制 *重金属诱导的活性氧物种:植物毒性和物理化学的植物对植物的氧化作用的氧化作用,这些植物对植物的氧化作用是对本植物的氧化作用,这些植物对植物的氧化量进行了分析:该植物对遗产的含量为小多拟南文。植物具有抗氧化剂系统,可帮助抵消由活性氧(ROS)造成的损害。该系统包括过氧化氢酶和过氧化物酶等酶,以及谷胱甘肽和抗坏血酸等非酶。本书探讨了有效的抗氧化剂系统如何帮助植物耐受诸如干旱和盐度之类的环境压力。它针对植物的生物技术和分子生物学专家,是本科生和研究生的其他阅读材料。Hakeem博士目前是沙特阿拉伯吉达的阿卜杜勒齐兹国王大学的教授。他在印度新德里的贾米亚·哈姆达德(Jamia Hamdard)拥有植物学博士学位,并于2011年完成。Hakeem博士是几个著名的奖学金的接受者,包括伦敦皇家生物学会的奖学金。在2016年加入阿卜杜勒齐兹国王大学之前,哈基姆博士在克什米尔大学担任助理教授,后来在马来西亚大学获得了奖学金。他因其在植物生态生理学,生物技术,分子生物学,药用植物研究和环境研究方面的专业知识而受到认可。除了他的研究工作外,他还广泛出版了,由国际出版商撰写或编辑了70多本书,以及140多个同行评审的期刊文章。他目前在几个高影响力科学期刊的编辑委员会任职。
France *correspondence: Prof. Dr. Juergen SIEPMANN College of Pharmacy, INSERM U1008 University of Lille, 3, rue du Professeur Laguesse, 59006 Lille, France juergen.siepmann@univ-lille.fr Abstract Different types of ibuprofen-loaded, poly (D,L lactic-co-glycolic acid) (PLGA)-based implants were prepared by 3D打印(液滴沉积建模)。网格形植入物的理论填充密度从10%到100%变化。在琼脂糖凝胶和搅拌良好的磷酸盐缓冲液pH 7.4中测量药物释放。使用重量法测量,光学显微镜,差分扫描量热法,凝胶渗透色谱和扫描电子显微镜来监测植入物的关键特性(以及暴露于释放介质时的动态变化)。有趣的是,与实验设置无关,植入物的植入物的释放相似。相比之下,填充密度100%的植入物显示释放动力学较慢,并且在琼脂糖凝胶中改变了释放曲线的形状。这些观察结果可以用聚合物丝之间的连续水相的存在(或不存在)来解释。在较低的填充密度下,这足以使该药物从单丝中释放出来。相比之下,在高填充密度下,细丝的合奏起着更大的(或多或少均匀)的聚合物矩阵,并且该药物要克服的平均扩散途径更长。关键词:PLGA;注入; 3D打印;布洛芬;肿胀;药物释放机制琼脂糖凝胶(模仿生物组织)阻碍了大量的PLGA肿胀,并延迟了最终的快速药物释放阶段的开始。对从基于PLGA的3D印刷植入物对药物释放的控制的机械理解得到了改进,可以帮助促进这种高级药物输送系统的优化。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要。自 2013 年以来,CEA 一直在运营一个名为 LHASSA 的中试级高压水蒸汽设施,该设施旨在测试潜热能存储模块,其运行条件类似于商用直接蒸汽发电 CSP 工厂。连接到该设施的相变材料 (PCM) 存储模块由铝翅片钢管组成,浸入硝酸钠中,并由铝插件包围以增强传热。本文介绍了对该存储模块进行第三次测试的结果,包括在各种运行条件下(固定滑动压力、完全和部分充电水平……)进行的 25 次充电-放电循环。存储测试部分的热性能显示出非常好的可重复性,与之前的测试活动相比没有任何性能下降。一些新的操作策略已成功测试(模拟太阳能场中云瞬变的充电中断、固定压力和变化质量流量的放电、充电-放电转换管理)。
气候变化严重影响了全球森林生态系统,由于温度升高,降水模式转移和极端天气事件,压力木本植物。这些压力威胁着生物多样性,并破坏了森林在碳固换,木材生产和生态系统稳定性中所发挥的重要作用。鉴于树木的少年阶段,传统的森林管理策略,例如选择性育种,无法跟上气候变化的迅速速度。 多路复用基因组编辑,特别是通过CRISPR技术,提供了一种有希望的解决方案,可以加速木本植物中气候富度特征的发展。 通过同时靶向多个基因,多重CRISPR可以有效地修改控制胁迫耐受性,抗病性和其他关键弹性因素的多基因性状。 这项迷你审查研究了多重CRISPR技术在森林管理,育种和农业生态实践中的潜力,展示了它们如何改善树木的弹性并支持可持续林业,以应对气候变化的日益增长的挑战。鉴于树木的少年阶段,传统的森林管理策略,例如选择性育种,无法跟上气候变化的迅速速度。多路复用基因组编辑,特别是通过CRISPR技术,提供了一种有希望的解决方案,可以加速木本植物中气候富度特征的发展。通过同时靶向多个基因,多重CRISPR可以有效地修改控制胁迫耐受性,抗病性和其他关键弹性因素的多基因性状。这项迷你审查研究了多重CRISPR技术在森林管理,育种和农业生态实践中的潜力,展示了它们如何改善树木的弹性并支持可持续林业,以应对气候变化的日益增长的挑战。
1 IBG-3:Agrosphäre,ForschungszentrumJülichGmbH,52428Jülich,德国; d.hofmann@fz-juelich.de(D.H.); b.thiele@fz-juelich.de(b.t. ); m.rahmati@fz-juelich.de(M.R. ); b.wu@fz-juelich.de(b.w.) 2植物分子生理与生物技术研究所,波恩大学,德国53115 BONN; v_schuetz@snu.ac.kr(V.S. ); hoelzl@uni-bonn.de(G.H. ); doermann@uni-bonn.de(p.d.) 3马拉格大学土壤科学与工程系,马拉格大学83111-55181,伊朗4化学系,苏黎世大学,CH-8057,瑞士苏黎世; laurent.bigler@chem.uzh.ch(L.B. ); federico.held@uzh.ch(F.H.) 5分子酶技术研究所,杜塞尔多夫的海因里希海大学和德国52428Jülich的ForschungszentrumJülichGmbH; f.kovacic@fz-juelich.de 6植物疾病和作物保护,波恩大学作物科学与资源保护研究所,德国波恩53115; hamacher@uni-bonn.de *通信:ulp509@uni-bonn.de;电话。 : +49-(0)228 732151†当前地址:植物可塑性研究中心,首尔国立大学,首尔08826,大韩民国。1 IBG-3:Agrosphäre,ForschungszentrumJülichGmbH,52428Jülich,德国; d.hofmann@fz-juelich.de(D.H.); b.thiele@fz-juelich.de(b.t.); m.rahmati@fz-juelich.de(M.R.); b.wu@fz-juelich.de(b.w.)2植物分子生理与生物技术研究所,波恩大学,德国53115 BONN; v_schuetz@snu.ac.kr(V.S.); hoelzl@uni-bonn.de(G.H.); doermann@uni-bonn.de(p.d.)3马拉格大学土壤科学与工程系,马拉格大学83111-55181,伊朗4化学系,苏黎世大学,CH-8057,瑞士苏黎世; laurent.bigler@chem.uzh.ch(L.B.); federico.held@uzh.ch(F.H.)5分子酶技术研究所,杜塞尔多夫的海因里希海大学和德国52428Jülich的ForschungszentrumJülichGmbH; f.kovacic@fz-juelich.de 6植物疾病和作物保护,波恩大学作物科学与资源保护研究所,德国波恩53115; hamacher@uni-bonn.de *通信:ulp509@uni-bonn.de;电话。: +49-(0)228 732151†当前地址:植物可塑性研究中心,首尔国立大学,首尔08826,大韩民国。
由于其短期变化性高,孤立工业电网中的太阳能光伏电力面临着电网可靠性的挑战。存储系统可以提供电网支持,但成本高昂,需要仔细评估电力容量需求。电池尺寸确定方法现在是许多研究的重点,详细建模和复杂优化在全球范围内呈上升趋势。然而,尽管太阳变化可能是不确定性和电池尺寸过大的根源,但它很少作为场景的输入。本研究利用小波变化模型和两个变化指标提出了几种太阳变化场景。这些场景被用作两种尺寸确定方法的输入,以比较最终的电池容量,并得出关于建模复杂性和场景识别作用的结论。结果表明,忽略光伏电站的平滑效应会导致对电池功率支持的估计过高 51%。另一方面,复杂的动态建模可能会使电池功率容量降低 25%。经济分析表明,可变性情景和电池尺寸方法的适当组合可以将平准化电力成本降低 3%。
该地区的野火 我们正在想念那些家人和朋友受到最近该地区野火影响的社区成员。我们可能会看到病人从野火区域撤离。 野火危害有多种形式。颗粒物污染来自烟雾中的颗粒,其中 90% 的颗粒直径为 2.5 微米或更小,称为 PM2.5。接触 PM2.5 会导致心血管和呼吸系统影响,哮喘、慢性阻塞性肺病、支气管炎、慢性心脏病或糖尿病患者的风险更大。老年人、儿童、孕妇、户外工作者或社会经济地位较低的人受到健康影响的风险较高。另一种威胁是一氧化碳 (CO),它与血红蛋白的结合亲和力是氧的 200-300 倍,从而减少向组织的氧气输送。一分子 CO 在一个 Hgb 结合位点的结合会增加氧气对其他结合位点的 Hgb 的亲和力,导致氧合血红蛋白解离曲线左移,组织卸载减少,组织缺氧恶化。CO 中毒患者的氧分压 (PaO2) 和脉搏血氧饱和度可能正常。症状可能包括头痛、不适、精神状态改变、呼吸短促、癫痫发作或樱桃红嘴唇。碳氧血红蛋白血液测试可诊断。
侧重于植物对环境挑战的耐受性,纳米技术已成为一种有力的工具,可以在全球人口不断增长的情况下帮助农作物和促进农业生产。纳米颗粒(NP)和植物系统可能会与分子相互作用以改变压力反应,生长和发育。NP可以通过吸收信号来检测和监测土壤中的痕量成分,从而为植物提供营养,预防植物疾病和病原体。对帮助植物生存的NP的过程有更多的优势了解各种压力源将有助于制定更长期的策略来应对这些挑战。尽管对NP在农业中的使用进行了许多研究,但我们审查了各种类型的NP及其对进入植物细胞的预期分子和代谢作用。此外,我们讨论了NP与所有环境压力的不同应用。最后,我们引入了农业NPS的风险,困难和前景。
图 1 利用植物遗传资源改良作物的有用特性。植物遗传资源(具有当前或潜在价值的植物遗传材料)包括作物地方品种——遗传上多样化的作物品种,是传统种子保存系统而非现代植物育种的产物,通常与当地适应性以及边缘农业环境中的传统农业实践有关(Maxted 等人,2020 年);作物野生近缘种(CWR)——与作物关系相对密切的野生物种,可以使用常规或基因工程技术与作物杂交,将野生物种的理想特性引入作物;以及未充分利用的作物。传统上,野生植物通过随意选择和谱系育种进行驯化和改良。用于表征育种系的现代技术包括基因组大小关联研究 (GWAS) 和自动表型分析。加速育种周期的方法包括标记辅助育种——识别和使用与促进有利性状的等位基因相关的遗传标记,以便在比表型筛选成熟植物更年轻、成本更低的情况下从杂交中识别合适的后代;基因组选择——从全基因组扫描遗传变异中进行定量统计预测;以及基因改造——越来越多地使用 CRISPR/Cas 技术进行