抽象背景/目的:视野研究对于理解细胞的重音至关重要,但是传统培养系统经常忽略实际植入物的三维(3D)结构,从而导致细胞募集和行为的限制,在很大程度上受重力控制。这项研究的目的是先驱一个新型的3D动态成骨细胞培养系统,用于以更临床和物理学相关的方式评估牙科植入物的生物学能力。材料和方法:在带有垂直定位的牙齿植入物的24孔盘中培养大鼠骨髓衍生的成骨细胞。使用3D旋转器进行控制的旋转,并应用了3个倾斜度。 细胞的附着,增殖和植入物表面上的分化是响应不同表面地形,物理化学特性和局部环境的响应。 结果:在经过测试的旋转速度(0、10、30、50 rpm)中,在30 rpm处观察到最佳成骨细胞附着和增殖。 在30 rpm的旋转速度和旋转速度之间发现线性相关性,在50 rpm下下降。 碱性磷酸酶(ALP)活性和矿化基质形成在新近酸蚀刻的亲水性表面上升高,与它们4周龄的疏水表面相比。 砂植入物显示出较高的ALP活性和基质矿化。 将N-乙酰半胱氨酸添加到培养基中增加了ALP活性和矿化。 结论:在优化的动态条件下,在体外成功附着,增殖和矿物质成骨细胞成功地附着,增殖和矿化。使用3D旋转器进行控制的旋转,并应用了3个倾斜度。细胞的附着,增殖和植入物表面上的分化是响应不同表面地形,物理化学特性和局部环境的响应。结果:在经过测试的旋转速度(0、10、30、50 rpm)中,在30 rpm处观察到最佳成骨细胞附着和增殖。在30 rpm的旋转速度和旋转速度之间发现线性相关性,在50 rpm下下降。碱性磷酸酶(ALP)活性和矿化基质形成在新近酸蚀刻的亲水性表面上升高,与它们4周龄的疏水表面相比。砂植入物显示出较高的ALP活性和基质矿化。将N-乙酰半胱氨酸添加到培养基中增加了ALP活性和矿化。结论:在优化的动态条件下,在体外成功附着,增殖和矿物质成骨细胞成功地附着,增殖和矿化。该系统区分了具有不同表面地形,润湿性和生化调制环境的植入物的生物学能力。这些发现支持开发3D动态牙齿植入物
引言植物微生物系统高度多样,通常由真菌和细菌组成,这些真菌和细菌殖民植物并随后影响植物的生长和发育(Fisher等,1992)。真菌与植物之间的相互作用也有所不同,其中之一是一种相互作用,包括内生真菌。内生真菌定植植物的多样性分布在所有组织中,包括根,茎,叶和水果(Viogenta等人。,2020)。内生真菌是生活在植物组织中而不会引起疾病症状的真菌(Strobel,2018)。Asniah,M。Taufik,A.R。Khaeruni,Muzuni,T。Sali,Muhidin,Suaib,G.A.K。 Sutariati,Sahidin,L.O.S。 Bande,H.S。 Gusnawaty,N.S。 asminaya。 2025。 甘蔗中内生真菌的形态和分子特征是病原体镰刀菌的拮抗剂。农业科学全球创新杂志13:181-192。 [2024年8月17日收到;接受了2024年9月22日;出版于2025年1月1日]Khaeruni,Muzuni,T。Sali,Muhidin,Suaib,G.A.K。Sutariati,Sahidin,L.O.S。 Bande,H.S。 Gusnawaty,N.S。 asminaya。 2025。 甘蔗中内生真菌的形态和分子特征是病原体镰刀菌的拮抗剂。农业科学全球创新杂志13:181-192。 [2024年8月17日收到;接受了2024年9月22日;出版于2025年1月1日]Sutariati,Sahidin,L.O.S。Bande,H.S。 Gusnawaty,N.S。 asminaya。 2025。 甘蔗中内生真菌的形态和分子特征是病原体镰刀菌的拮抗剂。农业科学全球创新杂志13:181-192。 [2024年8月17日收到;接受了2024年9月22日;出版于2025年1月1日]Bande,H.S。Gusnawaty,N.S。 asminaya。 2025。 甘蔗中内生真菌的形态和分子特征是病原体镰刀菌的拮抗剂。农业科学全球创新杂志13:181-192。 [2024年8月17日收到;接受了2024年9月22日;出版于2025年1月1日]Gusnawaty,N.S。asminaya。2025。甘蔗中内生真菌的形态和分子特征是病原体镰刀菌的拮抗剂。农业科学全球创新杂志13:181-192。[2024年8月17日收到;接受了2024年9月22日;出版于2025年1月1日]
肌肉骨骼疾病包括影响肌肉,骨骼,关节和结缔组织的各种疾病,从而导致移动性,功能和生活质量的严重损害。影响了全球超过13亿个人,肌肉骨骼疾病代表了残疾和经济负担的主要来源。传统的治疗方式,包括药理学干预措施和手术程序,通常受到不利副作用,延长的康复期和患者不满的限制,尤其是仅当专注于症状管理时。在响应中,互补和替代医学,尤其是使用药用植物,已经增加了兴趣,以增强肌肉骨骼疾病的治疗。药用植物具有广泛的具有抗炎,镇痛和抗氧化特性的药理学活性化合物,使它们成为常规疗法的辅助手段。这篇评论批判性地评估了药物植物和同种疗法医学之间的潜在协同作用,以管理肌肉骨骼疾病,重点是结合两种方式的综合疗法。具体来说,对具有科学支持的药理学特性的药用植物如何提高常规药物的治疗功效,减少剂量并减轻不良影响的药物植物进行了批判性讨论。此外,还讨论了将草药纳入既定的医疗保健系统的挑战,包括需要严格的临床验证,标准化和监管框架。总体而言,本文强调了综合治疗方法的潜力,以改善临床结果,增强患者的福祉,并建立更可持续的模型,以治疗肌肉骨骼疾病。
这些药物用于控制疼痛和不适。您可以(通过静脉)或透射(使用皮肤斑块)口服(通过嘴)口服它们。您还可以通过称为“患者控制镇痛(PCA)”的特殊泵获得止痛药。 PCA使您可以给自己安全,可控制的药物。止痛药的例子
当皮下乳房切除术以直接或延迟的假体进行皮下乳房切除术时;或在先前的乳房切除术进行良性或恶性疾病之后,包括未受影响的乳腺,以与对乳房进行对称性,并在其上进行了自由基或改良的自由基乳房切除术。(1997年第51号法案);或单侧或双侧乳腺癌;或与胸壁异常相关时,单侧乳房发育不全,乳房不对称性明显。示例包括但不限于波兰综合征,珠综合征,果皮果皮,胸肌或创伤;或根据MP 1.144性别确认手术的性别肯定,出于任何其他原因进行的乳腺成形术被认为是化妆品,并且在医学上不必要。可以通过基于植入物的方法或使用自动组织进行重建。在所有情况下,在所有情况下,在所有情况下,硅胶纤维填充乳房植入物的外植物和/或囊膜切开术都是医学上必不可少的:
二核苷酸糖基水解酶 (NADase) 可产生多种核苷酸衍生的信号分子 ( 5 , 6 )。这些衍生物被进一步加工成短寿命产物,根据其结构,这些产物可作为选择性配体,驱动由脂肪酶样蛋白 EDS1 (增强疾病易感性 1) 和 SAG101 (衰老相关基因 101) 或 PAD4 (植物抗毒素缺乏 4) ( 5 , 6 ) 组成的预先形成的蛋白质异二聚体发生特定重排。然后,两种类型的 EDS1 异二聚体会选择性地募集所谓的“辅助 NLR”,在 EDS1-PAD4 的情况下称为 ADR1(激活抗病性 1),在 EDS1-SAG101 的情况下称为 NRG1(氮必需基因 1)。然后 NRG1 和 ADR1 寡聚化并形成膜定位钙通道,从而激活下游免疫反应,特别是对于 NRG1 而言,导致受感染植物细胞死亡(7,8)。
抽象药用植物含有许多生物活性二级代谢产物(SMS),可用于治疗和预防疾病。SM浓度是评估药用植物质量的关键标准。SM积累受多种因素的影响,包括遗传背景,气候,土壤物理和化学特性以及环境变化。近年来,越来越多的研究表明,根际和内生微生物在调节药用植物中SMS的积累中起着至关重要的作用。一些微生物与药用植物建立共生关系以促进植物的生长。其他微生物可以通过多种策略直接合成SMS或促进植物SM生物合成,例如激活植物免疫信号通路,并将植物激素分泌到宿主细胞中,以操纵激素介导的途径。相反,SMS可以提高植物对环境应力的抵抗力,从而影响根际和内生微生物的组成。在这篇综述中,我们总结了了解微生物在调节药用植物中SM积累中的作用方面的最新进展。进一步的研究应集中于利用微生物来增强药用植物中生物活性SMS的积累。
burdock(tomentosum磨坊,根),苜蓿(Medicago sativa l.,叶子和茎),普通肺部(肺部官方L.,叶子和茎),常见的Yarrow(achillea millefium l.根),Sweetvetch(Hedysarum neteclect Ledeb。,根)和牛parsnip(Heracleum sibiricum L.,花序,叶子和茎)。要提取类黄酮,我们以40%,55、60、70和75%的浓度使用乙醇。分光光度法用于确定总类黄酮,而高性能液相色谱法被用来研究提取物的定性和定量组成。在sibiricum叶片中发现了类黄酮的最高收益率(除70%以外的所有浓度下),其次是55%和70%乙醇的乙醇提取物,以及75%的乙醇乙醇提取物。因此,这些植物在药物中使用最大的潜力。高性能液相色谱显示
摘要。印度尼西亚生物多样性丰富,以其药用植物多样性而闻名,这种多样性既独特又全球丰富。由于其次生代谢产物对各种疾病的功效,药用植物具有商业价值,对人类非常有用。次生代谢产物可确保植物免受非生物和生物压力的影响,并有助于授粉和果实分布。然而,气候变化、森林砍伐、人口增长、过度采伐和不可持续的药用植物贸易方式可能会导致许多种群灭绝。该研究旨在回顾气候变化对印度尼西亚药用植物的一些影响,这些药用植物是发现和人类发展的潜在药物来源。通过重点回顾每个单个因素如何影响植物的生长、发育和次生代谢产物的产生。本综述说明了影响印度尼西亚药用植物的环境因素(如温度、干旱和二氧化碳)的共同特征。显然,气候变化对现有资源的生命周期、药用植物的质量和产量、栖息地破碎化、分布范围的转移、物候模式的变化等产生了不利影响。与其他经济作物相比,药用植物对气候变化的研究很少且有限。该研究建议使用一些不同的适应性技术来缓解气候挑战并保护药用植物。