第二次关于群体物理和气态介电的研讨会(2 nd SPGD)将于8月26日星期一在塞尔维亚贝尔格莱德举行的2024年SPIG 2024会议上举行。全球大学,研究实验室和资助机构的领先专家将聚集在会议上,他们将重点介绍基于群的研究,以推进和利用高压技术的气态介电。研讨会旨在研究用于研究气态和凝结相的分子(包括散射和转运)的带电颗粒相互作用的实验和理论方法。特定的主题包括在低温等离子体中对带电粒子动力学的建模,重点关注与玻尔兹曼方程,蒙特卡洛法和基于流体方程的模型相关的技术。研讨会将包括受邀进度报告,然后进行有关局部问题和未来未来的讨论。研讨会得到塞尔维亚共和国科学基金会的支持,赠款号7749560,Egwin项目。7749560,Egwin项目。
物理学中很少有普遍的真理。氢动力行为就是其中之一。任何物质在高温下的运动遵循流体动力学定律。在其原始上下文中的流体动力学描述了水的粘性运动。然而,其原理适用于更广泛的环境:在恒星和星际物质的物理学中,以及等离子体的磁性流体动力学,也是在软活动物质的动力学中。也可以在应用学科中遇到它,包括工程:海洋动力学,天气建模,航空,气体通过管道或交通流量的动力学,仅举几个例子。流体动力行为甚至适用于早期宇宙的物理:在足够高到足以熔化质子和中子的能量时,组成夸克形成了夸克 - gluon等离子体。当粒子对撞机创建此状态时,它只有一秒钟的一小部分。然而,在短期内,它根据流体力学定律移动。
由 HBr/O 2 组成的等离子体通常用于硅蚀刻工艺,如栅极蚀刻工艺或浅沟槽隔离蚀刻,由于人们对此类化学反应中的硅蚀刻相当了解,因此它成为研究等离子体脉冲对气相和等离子体-表面相互作用的影响的最佳选择。目标是了解连续等离子体和脉冲等离子体之间的根本区别,以及等离子体产生的变化如何影响最终的图案转移。在论文 I 中,我们展示了等离子体脉冲对离子通量和离子能量的强大影响。1 结果显示,占空比 (dc) 而不是脉冲频率对这些参数有显著影响。在本文中,我们重点研究等离子体脉冲对 HBr/O 2 等离子体中的蚀刻机制和图案转移的影响。先前的实验已经证明脉冲等离子体中等离子体引起的损伤有所减少,2 – 4 通常通过使用扫描电子显微镜 (SEM) 成像、椭圆偏振测量和 X 射线光电子能谱 (XPS) 对侧壁钝化层 (SPL) 进行形貌分析。许多作者已经研究了 HBr/O 2 等离子体对硅和 SiO 2 的蚀刻机理。5 – 13 下面总结了 Si 和 SiO 2 蚀刻的基本机理,其中考虑了原料气中极小比例的氧气。含溴、氢和(较少量)氧的离子撞击硅表面、分解、破坏键并形成富含卤素的非晶层,也称为反应蚀刻层 (REL),其中含有 H、Br 和一些 O 原子。非晶层的厚度和成分会根据离子能量、压力和原料气流量而变化。由于氢原子比其他粒子小得多,它们可以更深地渗透到硅层中,然后硅原子可以因碰撞而解吸,或可以融入挥发性物质,如 SiBr 4。含氢分子如 SiH 2 Br 2 的挥发性更强,13 但硅蚀刻并不
注释:使用多个超声波马达和自校准编码器的高精度角度发生器 Rev. Sci. Instrum. 82, 116108 (2011) 使用标准具和带约束的拟合方法对条纹相机进行准确高效地表征 Rev. Sci. Instrum. 82, 113501 (2011) 使用大型螺旋装置中高密度等离子体发射的可见光和极紫外轫致辐射连续体的径向轮廓对平场空间分辨极紫外光谱仪进行绝对强度校准 Rev. Sci. Instrum. 82, 113102 (2011) 痕量水的动态重量标准 Rev. Sci. Instrum. 82, 105102 (2011) 注释:使用单个样品对光电子能谱的电子能谱仪进行结合能尺度校准 Rev. Sci. Instrum. 82, 096107 (2011) 有关 AIP Conf. Proc. 的附加信息。
摘要:在各向同性背景中,由自由电荷组成,光子的横向和纵向模式获得了对其分散关系的大校正,由中等光子内的自我能源描述。先前的工作已经开发出简单的近似值,描述了不同温度和密度的等离子体中壳光子的传播。但是,外壳激发也可以接收大型中诱导的校正,并且经常使用壳近似来捕获这些效果。在这项工作中,我们表明,脱壳自我能源在质量上可能与壳体案例截然不同。我们会在相位空间中,尤其是在经典和退化的等离子体中开发到各处准确的分析近似值。从这些中,我们以适当的限制恢复了壳上表达式。我们的表达式还重现了纵向模式的固态物理学的众所周知的Lindhard响应函数。
开发数值方法以在通用量子计算机上有效模拟非线性流体动力学是一项具有挑战性的问题。在本文中,定义了 Madelung 变换的广义以通过狄拉克方程求解与外部电磁力相互作用的量子相对论带电流体方程。狄拉克方程被离散化为离散时间量子游动 (DTQW),可在通用量子计算机上有效实现。提出了该算法的一种变体,以在均匀外力的情况下使用当前的噪声中间尺度量子 (NISQ) 设备实现模拟。使用该算法在当前 IBM NISQ 上执行相对论和非相对论流体动力学冲击的高分辨率(高达 N = 2 17 个网格点)数值模拟。这项工作表明可以在 NISQ 上模拟流体动力学,并为使用更一般的量子游动和量子自动机模拟其他流体(包括等离子体)打开了大门。
使用电子束(E-BEAM)产生的等离子体具有带有交叉的电气和磁场(E B)磁场的等离子体,表明2D材料(例如石墨烯和单晶钻石)的低破坏处理。 这些敏感材料的低损伤通常归因于入射到底物表面的离子低能和E B场中的离子限制。 在这项工作中,使用激光诱导的荧光诊断的亚晶型氩压在e束E b血浆中的原子和离子速度分布功能的测量值表明,温度的温度有1 eV的温度,足以破坏E型电场,并在E离子散发范围内驱动离子散发的趋势,并在E离子散发范围内散布,而离子的差异则在e离子散射中,并且等离子体结合的墙壁或底物。 因此,正是这种几乎是双极扩散过程,导致撞击壁/底物表面上的带电颗粒的通量。表明2D材料(例如石墨烯和单晶钻石)的低破坏处理。这些敏感材料的低损伤通常归因于入射到底物表面的离子低能和E B场中的离子限制。在这项工作中,使用激光诱导的荧光诊断的亚晶型氩压在e束E b血浆中的原子和离子速度分布功能的测量值表明,温度的温度有1 eV的温度,足以破坏E型电场,并在E离子散发范围内驱动离子散发的趋势,并在E离子散发范围内散布,而离子的差异则在e离子散射中,并且等离子体结合的墙壁或底物。因此,正是这种几乎是双极扩散过程,导致撞击壁/底物表面上的带电颗粒的通量。
此后,尽管 1970 年首次发布的深度剖析图是 GaAs 薄膜,但 GD-OES 技术在金属行业中得到了发展,现在广泛用于元素体分析和深度剖析,以表征导电金属涂层。然而,在过去十五年中,多种新仪器的发展扩大了 GD-OES 的应用领域,包括对先进材料的涂层和薄膜的表征,使其成为质量控制和工艺优化/监控的重要工具。辉光放电现在能够表征许多不同的材料,包括导电和非导电材料,涵盖从光伏(CIGS、钙钛矿……)到封装、从有机电子到储能(锂电池、燃料电池……)的广泛应用,并且是各种薄膜和厚膜沉积技术(等离子、电镀、阳极氧化等)的表征配套工具。GD-OES 也成为 XPS 和 SEM 的补充技术。
摘要 . 磁等离子体动力 (MPD) 推进器能够使用兆瓦 (MW) 的电力将准中性等离子体加速到高排气速度。这些特性使得此类设备值得考虑用于要求苛刻的长期任务,例如人类对火星或更远距离的探索。由于 MPD 推进器是正在进行的实验研究课题,而不是已开发的推进器,因此在系统和任务级别对其进行评估通常很困难。但是,为了评估 MPD 推进器在后续任务中的效用,需要对性能进行一些充分的表征,或者更确切地说,需要对性能进行预测,并定义系统级别以供分析使用。已经对自场 MPD 推进器的最新物理模型进行了检查、评估和重新配置,以供系统和任务分析师使用。物理模型允许根据可在实验室中测量的物理参数合理预测推进器性能。本文介绍了这些模型及其对未来 MPD 推进器设计的影响。
自从the骨脉搏放大的发明是在2018年被诺贝尔物理学奖所认可的,因此可用的激光强度持续增加。Combined with advances in our understanding of the kinetics of relativistic plasma, studies of laser–plasma interactions are entering a new regime where the physics of relativistic plasmas is strongly affected by strong-field quantum electrodynamics (QED) processes, including hard photon emission and electron–positron ( e – e þ ) pair production.繁殖过程和相对论的集体粒子动力学的这种耦合可能会导致新的等离子体物理现象,例如从近吸真空中产生致密的E – e – e – e – e – e – e – e – e s plasma,完全通过QED过程吸收了完全的激光能量,或通过QED过程来吸收Q,或者通过超相对性电子束的停止,可以渗透过毛孔,这可能会渗透到毛孔上,这是一位毛孔的质量,这是一位毛孔的质量,这是一定的质量,这是一定的质量,这是一位毛孔的质量。 光。除了具有根本的兴趣外,至关重要的是,研究这种新的制度是了解下一代超高强度激光器 - 肌电实验及其所产生的应用,例如高能量离子,电子,电子,正电子和光子源,用于基本物理学,医学放射治疗和下一代放射射线照相术的基础物理学研究,以及用于居家园的下一代安全和居民安全和行业。
