项目详细信息项目代码MRCIIAR25EX SANDERS标题质粒作为AMR矢量研究主题感染,免疫,抗菌素抵抗和修复摘要抗微生物抗性(AMR)正在升至危险的高水平,从而导致全球健康危机。要制定打击AMR的策略,我们需要知道AMR基因如何扩散。质粒作为无处不在的移动遗传元素是AMR传播的关键参与者。抗生素使携带AMR质粒有益于其细菌宿主,因此驱动质粒患病率和进化。该项目将研究可以在微生物组内和之间传播抗性的高度传播AMR质粒的演变。这将通过使用质粒基因组学和网络分析的针对性实验和对复杂微生物组的研究来完成。描述背景抗生素在临床和农业环境中的广泛使用导致抗生素耐药性的快速发展和传播,导致重大健康危机(1)。细菌可以通过突变或吸收抗药性基因获得对抗生素的抗性(2)。质粒在抗菌耐药性(AMR)基因的扩散中起关键作用(3),因为它们在不同细菌之间转移的能力(4)。质粒相互作用的不同细菌宿主的范围,即质粒通用主义,因此对于AMR的扩散至关重要。有证据表明抗生素可以增强质粒通用性,这不仅可以促进AMR基因在选择下的传播,而且还可以允许其他AMR基因与通用质粒一起搭档(5)。这可能导致多药抗性质粒在微生物群落中的传播,更令人担忧的是,在环境,农业和临床微生物中,这是OneHealth概念中承认的威胁(2)。AMR质粒扩散,当降低抗生素选择时会减少。但是,尚不清楚是否是这种情况。质粒可以迅速发展(6),并且持续暴露于多个宿主可能导致质粒的演变,这些质粒在微生物中传播更为成功(7)。即使是单一抗生素的暴露也可能导致质粒的演变,这些质粒通常是AMR基因的高度感染矢量。该项目旨在确定质粒如何变为可传播的AMR载体。将经过实验测试,与环境相关的抗生素暴露方式如何塑造质粒通用,并确定质粒上的分子/功能变化。该项目将进一步研究AMR质粒在复杂社区(宿主质量网络)和病原体与理论建模相结合的传播。关键问题是进化的质粒通用性,AMR的驱动因素扩散到微生物中的病原体吗?随着质粒通用的增加,我们可以期望宿主质差网络的结构发生重大变化,变得更加互连,质粒在
CRISPR/Cas 系统是一种适应性免疫防御机制,古细菌和细菌利用该系统降解外来遗传物质。在这些生物体中,噬菌体的外来遗传物质被获取并整合到 CRISPR 基因座中 (1,2)。这种新物质也称为间隔物,可产生序列特异性片段,用于未来抵抗噬菌体感染。这些序列特异性片段被翻译成短 CRISPR RNA (crRNA),并通过 CRISPR 相关 (Cas) 蛋白的核酸酶活性引导互补入侵 DNA 的切割,该蛋白也由 CRISPR 基因座编码 (1,2)。II 型 CRISPR 系统的 Cas9 核酸酶具有 RNA 结合域、α 螺旋识别叶 (REC)、包括用于 DNA 切割的 RuvC 和 HNH 的核酸酶叶以及原间隔物相邻基序 (PAM) 相互作用位点 (1,2)。 crRNA 通过与 REC 叶内的桥螺旋结合与 Cas9 核酸酶形成复合物,并与 crRNA 的骨架形成多个盐桥 (1,2,3)。
默认情况下,将RNase H处理的RNA结构折叠为RNA结构,以创建用于DNA聚合酶I(pol I)的底物以启动DNA复制。反义RNA是由重叠基因产生的,如果允许该基因与RNA底漆相互作用,则会诱导不启动DNA复制的替代折叠。由于反义RNA的浓度与质粒副本成正比,因此作为拷贝控制负反馈回路。(b)10
3。Kysik,J.,Furtak,K.,Szymczak,G.,Skowroski,J.,Panusz,H。,&Bartnik,E。(1979)。 分子克隆的限制片段源自小牛卫星I DNA的双ECORI/PSTI消化及其限制分析。 Zeitschrift Fur Naturforschung- C节生物科学杂志,34(12),1151–1155。 scopus。 https://doi.org/10.1515/ZNC-1979-1212Kysik,J.,Furtak,K.,Szymczak,G.,Skowroski,J.,Panusz,H。,&Bartnik,E。(1979)。分子克隆的限制片段源自小牛卫星I DNA的双ECORI/PSTI消化及其限制分析。Zeitschrift Fur Naturforschung- C节生物科学杂志,34(12),1151–1155。scopus。https://doi.org/10.1515/ZNC-1979-1212
我们构建了一组质粒,可用于在某些革兰氏阴性细菌中表达重新组合功能,从而促进体内遗传操作。这些质粒包括复制的起源和噬菌体λ基因组的片段,该基因组在其天然控制下包含红色基因(EXO,BET和GAM)。这些构建体不需要通常需要的抗终止事件才能进行红色表达,从而使它们在不同物种中的应用更可能。一些质粒具有温度敏感的复制子来简化固化。在创建这些向量时,我们开发了两个有用的重组应用程序。仅使用质粒起源和靶同源性,可以通过GAP-REPAIR检索任何与药物标记相关的基因。复制的质粒起源可以通过靶向替换来更改为不同的来源,从而有可能更改其拷贝数和主机范围。这两种技术都将被证明可用于操纵体内质粒。大多数红色质粒构造在大肠杆菌中催化有效的重组,其背景重组水平较低。这些红色质粒已在沙门氏菌中成功进行了测试,我们预计它们将在其他相关的革兰氏阴性细菌中提供有效的重组。由Elsevier B.V.
质粒是一种自主复制的染色体外环状 DNA 分子,不同于正常的染色体 DNA,在非选择性条件下对细胞存活并非必需。细菌质粒是双链 DNA 的闭合环状分子,大小从 1 到 >200 kb 不等。它们存在于多种细菌物种中,在这些细菌物种中,它们表现为独立于细菌染色体遗传和复制的额外遗传单位。质粒通常含有编码酶的基因,这些酶在某些情况下对宿主细胞有利。编码的酶可能与抗生素耐药性、对环境中的毒素(例如复杂的有机化合物)的耐药性或细菌自身产生的毒素有关。质粒一词最早由美国分子生物学家 Joshua Lederberg 于 1952 年提出。同年,J. Lederberg 回顾了细胞遗传方面的文献,并建议将所有染色体外的遗传决定因素称为“质粒”。与细菌染色体相比,质粒的尺寸非常小,较老的质粒仅为大肠杆菌染色体尺寸的 0.8%,尽管存在其他比这个尺寸小的质粒,但 Pl. DNA 和 Ch. DNA 非常相似,环状结构为一个二进制字符串,但在细胞内,与染色体不同,质粒牢固地缠绕在自身周围,形成所谓的超卷曲质粒或共价闭合环状 (CCC)。如果已知质粒的表型标记(例如抗生素抗性),建议在选择压力下培养细胞以避免质粒丢失。
质粒在生命科学研究和治疗学开发中是必不可少的。目前,大多数实验室定制其质粒。到目前为止,尚无有关实验室制造质粒质量的系统数据。在这里,我们报告了全球数百个学术和工业实验室的质粒的广泛调查。我们表明其中几乎一半包含设计和/或序列错误。用于制造AAV载体的转移质粒,该质粒广泛用于基因治疗中,由于其固有的不稳定性,ITR区域中约有40%的突变,这受到GC含量侧翼的影响。,由于其毒性,我们还列出了难以克隆质粒或包装中的基因。我们的发现引起了人们对实验室制造的质粒的可信度的严重关注,这与以前报道的未被低估的支原体污染和错误识别的哺乳动物细胞系相同,并突出了社区广泛的标准,以维护这项在研究和医学中这种普遍于这种普遍剂量的质量。
。cc-by-nc-nd 4.0国际许可证(未获得同行评审证书)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本发布于2023年7月20日。 https://doi.org/10.1101/2023.07.20.549855 doi:Biorxiv Preprint