使用自私遗传元件(SGE)抽象的拮抗剂进化可以推动宿主抗性的进化。在这里,我们研究了宿主抑制2微米(2 m)质粒,质质寄生虫,它们与萌芽的酵母菌共同发展。我们开发了SCAMPR(用于测量质粒保留的单细胞测定),以测量活细胞中拷贝数异质性和2 m质粒损失。我们确定了缺乏内源性2 M质粒并可重复抑制有丝分裂质粒稳定性的三种酿酒酵母菌株。着眼于Y9 Ragi菌株,我们确定质粒限制是可遗传的和占主导地位的。使用大量分离分析,我们确定了一个高置信度定量特质基因座(QTL),其单个变体MMS21与增加2 m的不稳定性相关。MMS21编码SMC5/6复合物的SUMO E3连接酶和一个重要组成部分,涉及姐妹染色单体内聚,染色体分离和DNA修复。我们的分析利用自然变异来揭示出一种新颖的手段,萌芽的酵母可以克服非常成功的遗传寄生虫。
酵母人工染色体(YAC)为隔离和映射哺乳动物染色体的区域提供了强大的工具。,我们通过通过同源重组将救援质粒插入YAC载体中的DNA片段开发了一种快速有效的方法来分离代表YAC克隆极端的DNA片段。构建了两个救援载体,其中包含一个酵母Lys2可选基因,一个细菌的复制起源,一个抗生素耐药基因,一个包含多个限制位点的聚链链接和与PYAC4载体同源的片段。“终端克隆”程序涉及将救援载体转化为带有YAC克隆的酵母细胞,然后制备酵母DNA并转化为细菌细胞。所得质粒的长度最高20 kb,可用作杂交探针,作为直接DNA测序的模板,以及作为荧光原位杂交绘制的探针。这些向量适合从使用PYAC衍生载体构建的任何YAC中拯救端键。我们通过从人类YAC图书馆中拯救Yac-end片段来证明这些质粒的实用性。
碳青霉烯是广谱抗生素,在治疗由革兰氏阴性细菌引起的严重感染中起主要作用。碳青霉烯型肠杆菌科的全球传播正在成为一个公共卫生问题(Jamal等,2020)。肠杆菌科中碳青霉烯耐药性的升高主要是由于获得了碳青霉烯 - 氢化酶(Carbapenemases)(Tilahun等,2021)。编码碳青霉酶的基因可以掺入细菌染色体中,但主要位于移动元素上,例如在细菌菌株和物种之间可转移的质粒或转座子(San Millan,2018年)。因此,临床暴发通常很复杂,涉及克隆,质粒或转座子的基因传播的各种因素(Brehony等,2019)。碳青霉素型OXA-48首次出现在2000年代中期,此后在许多欧洲国家和世界各地都发现了(Hidalgo等,2019)。在法国,它是产生甲状腺素酶的肠杆菌科(CPE)中最常见的酶(Emeraud等,2020)。BLA OXA-48基因被认为源自环境Shewanella菌株的染色体(Tacão等,2018)。它在物种之间的快速传播是由于其在转座子中筑巢(TN 1999),该转座主要由含有/M型质粒携带(Shankar等,2020)。控制医院病房中的暴发是必要的,以限制多药耐药细菌的传播。CPE对患者的定殖可以干扰适当的护理。fmt是CPE定殖也可能影响癌症患者化学疗法的开始,因为它与接受诱导化疗的患者的存活率较低有关(Ballo等,2019)。因此,已经实施了一种恢复健康的肠道菌群并消除CPE储层(例如粪便菌群移植(FMT))的策略。
基因克隆是指分离目标 DNA 序列以复制多个副本的过程。目标基因被分离(通过 PCR),然后插入质粒载体(通过消化和连接)。质粒载体能够在宿主细胞内自主复制,确保序列被克隆。重组载体可用于创建转基因生物 (GMO),进而可用于生产大量治疗性蛋白质(生物制药)。基因克隆的过程涉及多个步骤:•用聚合酶链式反应(PCR)分离和扩增目的基因(和质粒载体)•如果要将基因整合到细菌细胞中,则需要 cDNA 拷贝(逆转录)•用相同的特异性限制性酶(平端或粘端)消化基因和质粒载体•通过将目的基因连接到质粒载体(使用 DNA 连接酶)来创建重组质粒•通过凝胶电泳将重组质粒与正常质粒(没有目的基因)分离•通过载体递送方法(例如电穿孔)将重组质粒引入靶细胞•在抗生素培养基中培养细胞以选择修饰细胞(只有带有质粒的细胞才具有抗生素抗性)
使用我们的在线质粒平台,您可以设计质粒,与您的团队共享,并咨询我们的专家,他们可以从项目开始时帮助您确定您的需求。您将收到可满足您项目期望的现成的,量身定制的质粒。此外,将通过下一代测序作为质量控制措施来验证质粒的全长。
2.2.1 质粒在感受态细胞中的转化 ...................................................................................... 14 2.2.2 taXPD 的蛋白质纯化 ................................................................................................ 14 2.2.3 体外 ATP 测定 ............................................................................................................. 15 2.2.4 体外解旋酶测定 ............................................................................................................. 15 2.2.5 化学类似物的合成、纯化和验证 ............................................................................. 16 2.2.6 抑制剂研究 ............................................................................................................. 16 2.2.7 米氏动力学 ............................................................................................................. 17 2.2.8 结晶筛选 ............................................................................................................. 17 2.2.9 统计分析 ............................................................................................................. 17
This protocol describes the surgical procedure for co-electroporation of two plasmids targeting neu- ral stem cells (NSCs) in the lateral ventricle of mouse postnatal day 2 (P2) pups: a nonintegrating plasmid encoding for the piggyBase transposase and Cas9 and an integrating piggyBac vector car- rying the oncogenes, CRISPR guide RNAs and a TDTOMATO荧光报告蛋白通过倒末端重复序列(ITRS)倾斜(图1)。在电穿孔后,瞬时CAS9表达会导致肿瘤抑制基因失活,而PiggyBase介导的PIG-GYBAC货物的整合确保了靶向NSC及其后代中的癌基因和流动性记者的稳定表达。的整合是由PiggyBase转疗的酶促活性介导的,该转移的酶活性通过切割和粘贴机制在受体细胞基因组中的TTAA位点识别并将其与它们的内容一起插入。NSC的靶向是通过最小的人GFAP(HGFAPMIN)启动子序列1-3驾驶PiggyBase/cas9的驱动表达来实现的。
提取核酸是任何分子生物学研究的起点,因此被认为是一个关键过程。质粒被认为是原核生物进化的主要驱动力,因为它们可以在人群之间迁移,使其成为侧向DNA转移和微生物战争的有效药物。质粒的重要性超出了微生物的进化,因为它们被广泛用作基础研究(例如随机诱变)的遗传工程载体,以及在生物技术学(例如胰岛素生产),合成生物学,农业,农业,农业工程(例如,Bioss的遗传工程)和医学(E. g.g.,g。由于质质剂DNA(pDNA)的有效生产方法的需求已响应于基因治疗和疫苗的快速进步,因为与病毒载体相关的有利安全问题,因此pDNA在基因治疗和疫苗中的快速进步。从细菌细胞中纯化的质粒DNA可以用内毒素污染至不同的扩展,具体取决于纯化方法。报告表明,内毒素可以降低许多真核细胞系中的转染效率。HIMEDIA的HIPURA®无内毒素质粒MIDIPREP DNA纯化试剂盒的预填充墨盒可提供无内毒素,高产量质粒DNA和无麻烦的自动化溶液,以萃取。
图3。准备和使用病毒载体在靶细胞中重组蛋白表达。(1)包装细胞(例如HEK293)用编码感兴趣基因和必要病毒蛋白的三个或四个质粒转染。(2)将病毒组装在包装细胞中,然后收获和纯化。(3)该病毒用于转导靶细胞,释放感兴趣的基因。(4)在此示例中,将慢病毒载体的RNA反向转录为DNA,将DNA整合到宿主基因组中以进行重组蛋白表达。