相关 - Sumana Kumar抽象的微塑性污染已成为一个关键的环境问题,牙科通过基于塑料的材料,个人护理产品和不当的临床废物管理产生了重大贡献。壳聚糖是一种丰富的,可生物降解且高度吸附的生物聚合物,为减轻牙齿实践中的微塑性污染提供了有希望的解决方案。本综述探讨了壳聚糖作为微塑料的替代吸附剂的潜在潜在吸附剂,并强调了其通过静电相互作用和氢键结合电荷和极性微塑料的能力。在牙科废水处理中实施壳聚糖增强的过滤系统可以大大减少从牙科实践中释放微塑料的。此外,本文解决了与采用基于壳聚糖的技术有关的挑战,包括可扩展性和监管障碍。它强调了创新方法的需求,以改善牙科废物管理中的可持续性。关键字:微塑料,牙科,壳聚糖,环境污染,废物管理
塑料由于其独特的特征和多功能性,很可能仍然是全球无处不在的材料。在循环且可持续的未来中,塑料是由可再生原料等可再生原料产生的,例如可回收的塑料,生物质和CO 2 /氢,需要转化全球价值链。用再生塑料产生新塑料是首选的途径,因为它是塑料废物的最佳用途。但是,即使全球回收率具有其理论潜力,也只能根据回收原料产生约60-70%的塑料体积,考虑生产,使用,收集,(BIO)降解,微塑性形成和回收率的产量的损失。因此,仍需要大量可持续处女塑料生产量来替代这些损失并满足不断增长的需求。基于生物量和CO 2的塑料是以圆形方式实现此目的的唯一剩下的选择。可以预期将在
微塑料对果阿旅游业果阿经济的影响很大程度上取决于旅游业,其海滩是主要的吸引力。景点原始的沙子和闪闪发光的海水长期以来吸引了国内和国际游客。但是,人们对环境降解的认识越来越多,尤其是关于塑料污染的意识,已经开始对果阿的吸引力。当地企业主,酒店运营和海滩供应商开始看到塑料污染的经济影响。访客变得越来越注重生态意识,有些人选择了更干净且具有更好可持续实践的其他目的地。微型塑料污染需要在战争的基础上解决,否则可能会严重破坏果阿的旅游收入。游客来果阿享受海滩,但塑料废物的景象
这项研究致力于制定有限菌株非局部弹性拓扑拓扑优化。在原始问题中,我们采用标准的超弹性本构定律和voce硬化定律来描述弹性塑性响应,而后者通过微态正则化增强了弹性响应,以解决有限元方法或基于网格的方法的网格依赖性问题。对于优化问题,目标函数通过将其编写为多个子功能的总结来适应多个目标。采用连续的伴随方法来制定伴随问题;因此,相应的管理方程式以连续的方式编写,例如原始问题。因此,这些方程与使用的离散方法无关,并且可以将其实施到各种模拟方法中。此外,将派生的灵敏度取代为反应 - 扩散方程,以实现设计变量的更新。提供了单材料(Ersatz和真正的材料)和两种物质(矩阵和包含材料)拓扑优化,以证明配方的希望和性能。尤其是,我们讨论应将材料参数的值赋予ersatz材料的哪些值,材料非线性如何影响优化结果以及优化趋势如何通过给出目标函数权重的不同值来改变。
保留所有权利。未经许可就不允许重复使用。(未经同行评审证明)是作者/资助者,他已授予Medrxiv的许可证,以永久显示预印本。
每个分析仪的特征表1显示了每种仪器的外观和特征。FTIR仪器用中红外光照射样品,并检测到进行定性和定量分析的光吸收程度。可以进行非破坏性测量,因此在FTIR测量后,可以使用另一种仪器再次分析样品。FTIR+ATR可以测量的MPS的大小为几百μm或更多。可以使用几个10秒的测量值对单个塑料进行分析。使用塑料分析仪,一个塑料分析系统,其中包括紫外线受损和受损的塑料库,即使是那些不熟悉分析的塑料库,也可以轻松地测量和分析在环境中降级的MP。py-GC-MS是一种瞬间热分解样品的仪器,通过柱子上的组件将蒸发的热解产物分离,并通过MS检测到它们。可以通过检测特定于每种塑料的热分解产品来进行定性和定量分析。由于测得的样品被热分解,因此无法对其进行分析。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年1月13日。 https://doi.org/10.1101/2025.01.13.632794 doi:Biorxiv Preprint
Narendra Kumar S 1,Prathyush U 2,Sri Janane S v 3助理教授,生物技术,RV工程学院BE学生,部门摘要 - 传统基于石油的塑料的环境影响已经迫切需要可持续的替代方案。本文使用果皮(一种富含淀粉和纤维素的有机废料)研究了生物塑料的合成。该过程涉及化学提取,增塑和成型,以产生可生物降解的材料。测试揭示了生物降解性和机械性能的有希望的结果,尽管需要改善防水性。这项研究证明了基于水果果皮的生物塑料解决塑料污染并促进循环经济中的废物吹失的潜力。索引术语 - 生物塑料,果皮,可持续性,生物降解性
ISSN印刷:2617-4693 ISSN在线:2617-4707 IJABR 2025; 9(1):22-30 www.biochemjournal.com收到:02-11-2024接受:03-12-2024 NILAKSHI TALUKDAR食品科学与技术计划,阿萨姆邦农业大学园艺系,印度阿萨姆邦,印度阿萨姆邦,印度阿萨姆邦农业大学,印度阿萨姆邦,罗宾斯拉·钱德拉·沃克罗(Robin Chandra Chandra Boro)农业学系。Jorhat,印度阿萨姆邦Manashi Das Purkayastha食品科学技术计划,阿萨姆邦农业大学园艺系,印度乔尔哈特,印度坦克斯瓦尔·纳特农业生物技术系,阿萨姆邦农业大学。Jorhat, Assam, India Sunayana Rathi Department of Biochemistry & Agricultural Chemistry, Assam Agricultural University, Jorhat, Assam, India Dr. Kritideepan Sarmah Department of Biochemistry & Agricultural Chemistry, Assam Agricultural University, Jorhat, Assam, India Corresponding Author: Dr. Kritideepan Sarmah Department of Biochemistry & Agricultural印度阿萨姆邦乔哈特的阿萨姆邦农业大学化学
摘要:细菌反硝化是土壤N 2 O水槽的主要途径,这对于评估和控制N 2 O排放至关重要。生物基多羟基烷烃(PHA)微塑料颗粒(MPS)在常规环境中缓慢降解,持续惰性持续时间。然而,在降解之前,PHA微塑料老化对细菌n 2 O下沉量的影响仍然很少。在这里,土壤模型菌株denitrificans暴露于0.05-0.5%(w/w)的Virgin和老年PHA MPS。尽管没有观察到分子量的显着变化,但老化的PHA MPS阻碍了细胞的生长和n 2 O的降低率,导致N 2 O排放的激增。1 h NMR光谱和UPLC-QTOF-MS分析确定γ-丁洛洛洛酮是从老年PHA MPS释放的关键成分。在细胞水平上的代谢验证证实了其对N 2 O水槽和ATP合成的抑制作用。在周围自发质子化和水解的γ-丁龙酮将与ATPase的质子竞争,并破坏硝化电子转移和氧化磷酸化之间的耦合。因此,能量缺陷的细胞减少了降低n 2 o的电子供应,这并不有助于节能。这项工作揭示了一种新型机制,通过这种机制,PHA微塑性衰老会损害细菌N 2 O下沉,并突出了考虑生物基型微塑性衰老带来的环境风险的需求。关键字:多羟基烷酸盐,生物塑性衰老,细菌反硝化,n 2 o下水道,能量代谢,γ-丁酸苯二甲酸,denitrificans