塑料污染已升级为全球环境危机,数百万吨合成聚合物在生态系统中积累,对生物多样性和人类健康构成重大威胁。传统的塑料废物管理方法,如机械和化学回收,在可持续性方面表现出局限性,特别是对于聚乙烯 (PE) 和聚苯乙烯 (PS) 等聚合物,它们表现出明显的抗降解性。利用微生物酶和合成生物学的生物技术方法为解决这一紧迫问题提供了一种有希望的替代方案。促进聚对苯二甲酸乙二醇酯 (PET) 降解的酶(如 PETase 和 MHETase)与针对更难降解塑料的漆酶和脂肪酶结合,在分子水平上分解塑料方面表现出了巨大的潜力。尽管取得了这些进展,但在降解效率方面仍然存在挑战,尤其是对于非 PET 塑料,以及扩大这些生物技术工艺的经济可行性。此外,温度、pH 值和氧气水平等环境参数显著影响酶的功能,而监管和社会障碍阻碍了转基因生物 (GMO) 的利用。尽管如此,蛋白质工程、基于 CRISPR 的基因编辑等新兴技术以及生物反应器等工业应用为克服这些挑战提供了途径。本文探讨了生物技术塑料降解的当前形势、挑战和前景,强调了其对实现全球循环经济目标和加强可持续废物管理战略的潜在贡献。
摘要 — 在细胞群自适应动力学框架内,提出了癌症生长和癌细胞特征(又称性状或表型)演变的数学模型,以及控制它们的优化和最优控制方法。它们考虑了癌细胞群的异质性,即它们的生物变异性,以及它们的内在可塑性,即它们的非遗传不稳定性,这使得它们能够快速适应不断变化的环境。所提出的癌症疾病观点特定于多细胞生物,依赖于一种相对新颖的观点,与十亿年的进化观点一致。基于癌症哲学方面的最新贡献,这些数学模型旨在设计理论治疗策略,以同时控制肿瘤进展并将药物不良事件限制在健康细胞群中。
摘要:用湿过程将粗菜蛋糕用作制备基于蛋白质的生物塑性薄膜的起始材料。农业废物在40℃下实现的甲酸的简单暴露15分钟,可以有助于浆液,可以通过在没有其他增塑剂添加的情况下铸造出来生产可靠的生物塑料胶片。确定最佳过程条件后,所有薄膜和膜均通过DSC和FT-IR光谱依次表征。还测试了他们的吸水能力,拉伸强度和休息性能时的伸长率。通过Fe-Sem/EDX确定产物的各自的表面形态和基本组成。通过将氧化石墨烯加载到生物聚合物三维基质中来进行一些改善其内在特性的尝试。
1. 免疫原性细胞死亡:建立抗肿瘤免疫反应 10 1.1 调节性细胞死亡 10 1.1.1 细胞凋亡 10 1.1.2 坏死性凋亡 10 1.1.3 细胞焦亡 11 1.1.4 铁死亡 11 1.1.5 自噬性细胞死亡 12 框 1 .内在和外在凋亡 12 1.2 免疫原性细胞死亡 14 1.2.1 ATP,募集树突状细胞的基石 15 1.2.2 ANXA1,树突状细胞的指南针 16 1.2.3 钙网蛋白暴露引导肿瘤细胞摄取 17 1.2.4 HMGB1-TLR4 相互作用控制肿瘤抗原加工 18 1.2.5 ATP 的双重作用,从树突状细胞募集到 T 细胞启动 19 1.2.6 CXCL10,I 型干扰素的下游,募集/保留 T 细胞 19 表 1 . 免疫原性细胞死亡诱导剂(改编自 45 ) 21 1.3 ICD 诱导的肿瘤生长控制:体内证据 25 框 2 . ICD 背后的应激反应 28 1.4 ICD 的临床意义 30 1.4.1 ICD 作为化疗成功的预测因素 30 1.4.2 放射诱导的远隔效应 31
本文考虑了通过热塑性材料挤出和聚合物粉末床熔合来 3D 打印锂离子电池的能力。重点研究了由聚丙烯、LiFePO 4 作为活性材料和导电添加剂组成的正极配方,从电化学、电气、形态和机械角度彻底讨论了这两种增材制造技术的优缺点。基于这些初步结果,提出了进一步优化电化学性能的策略。通过全面的建模研究,与经典的二维平面设计相比,强调了各种复杂的三维锂离子电池结构在高电流密度下的增强电化学适用性。最后,研究了通过多材料打印选项工艺直接打印完整锂离子电池的能力。
通过GABA能中间神经元(INS)抑制法规在正常大脑中的复杂神经计算中起着至关重要的作用,其畸形和功能错误会导致多种脑部疾病(Del Pino等,2018; Frye等,2016; kepecs and 2016; Kepecs and 2014; kepecs and fishell,2014; theanno; theang; theang; ealig; al ang e e eT; Al。,2016)。在过去的二十年中,在理解GABA能抑制回路的发展,可塑性,功能和病理相关性方面取得了显着进展。尤其是单细胞OMICS,遗传靶向,体内成像,功能操纵和行为分析的最新技术进步,我们在亚型中的知识已经爆炸。文章的研究主题,包括七篇原始研究论文和两项评论,其主题是“哺乳动物大脑中GABA能抑制回路的组装,可塑性和功能的主题”主题,突显了我们要走多远,以及我们需要走的地方。这些报告全面讨论了有关GABA能抑制系统的主题,从细胞类型的规范,突触组件和功能多样性到其在健康和疾病中的作用。总体目标是解开无数的INS将自己编织到功能电路中,这是理解皮质抑制的力量和脆弱性的核心。The challenging but essential tasks for dissecting the inhibitory system is to disentangle intricate inhibitory circuits consisting of diverse GABAergic IN subtypes ( Bandler et al., 2017 ; Hu et al., 2017 ; Lodato and Arlotta, 2015 ; Miyoshi, 2019 ; Pelkey et al., 2017 ).Machold和Rudy回顾了由转录组学和发育起源定义的亚型皮质和海马的新兴观点,并突出了一种用于靶向亚型特定的遗传工具包,以及每种方法固有的技术考虑因素。
在低强度TU的快速增长的领域中,使用“离线”经颅超声刺激(TUS)方案特别感兴趣。离线TU可以在刺激后长达几个小时调节神经活动,这表明诱导早期神经塑性。对人类和非人类灵长类动物的研究都显示了神经调节靶标和与之相关的区域的分布式网络的空间特定变化。这些变化表明兴奋性或抑制作用是所用方案与基础大脑区域和状态之间复杂相互作用的结果。了解如何通过离线诱导早期神经塑性,可以为在广泛的脑部疾病中影响晚期神经塑性和治疗应用开放途径。
结果:结果表明,与男性正常对照组相比,男性精英射击者在额叶,额叶,顶叶,前叶,前叶,丘脑和扣带回的区域均匀性(REHO)以及较高的功能连接性以及内侧额叶皮层(MEDFC)和临时临时时间幼虫(Tometemal Permutonal Permutanal Gyrus(Tomtemal)(Tomteg)(Tomteg)(Tomteg)(tome)(Tometec)之间。男性精英射击者在右下颞叶中还显示出更高的皮质厚度。右上纵向筋膜(SLF),右下额枕骨(IFF)和右前丘脑辐射(ATR)中的下部各向异性(FA)值;镊子小调和左ATR中的较低轴向扩散率(AD)值;右壳核和右下顶叶皮层(IPC),右IPC和右心肠皮层以及右侧室内皮层以及右上层顶皮层(SPC)之间的结构连通性较低。
提出了通过3D打印过程获得的各向异性,弹性碎裂模型的相位场模型。开发了各向异性相位的延伸到弹性性模型。该模型能够描述从准脆性到弹性塑料断裂行为的过渡,具体取决于微观结构在外部载荷方面的层角度。这种特征特别是描述分层印刷材料中各向异性断裂行为。本模型引入了两个相字段变量,一个散装断裂损伤和一个微界面损伤变量,描述了两种不同的微损伤机制。最后,我们提出了一种原始方法,以使用代表性体积元素上的数值均质化来识别宏观应变密度作为微界面损伤变量的函数。数值研究表明,目前的模型相对于网状修复是收敛的,并允许描述分层弹性塑料结构中的复杂裂纹启动和传播。提供了实验比较,以验证将这种模型用于3D打印聚合物材料的使用。
迷走神经是身体和大脑之间的内感受中继。尽管迷走神经在摄食行为、能量代谢和认知功能中的作用已得到充分证实,但连接迷走神经和海马的复杂功能过程及其对学习和记忆动态的贡献仍然难以捉摸。在这里,我们研究了肠脑迷走神经轴是否以及如何在行为、功能、细胞和分子水平上促进海马的学习和记忆过程。我们的结果表明,迷走神经轴的完整性对于长期识别记忆至关重要,同时对其他形式的记忆也有保护作用。此外,通过结合多尺度方法,我们的研究结果表明肠脑迷走神经张力在扩大细胞内信号事件、基因表达、海马树突棘密度以及功能性长期可塑性 (LTD 和 LTP) 方面发挥着允许作用。这些结果强调了肠脑迷走神经轴在维持海马群的自发和稳态功能以及调节其学习和记忆功能方面的关键作用。总之,我们的研究全面了解了肠脑迷走神经轴在塑造时间依赖性海马学习和记忆动态方面的多方面参与。了解这种内感受性身体-大脑神经元通讯背后的机制可能为与认知衰退相关的疾病(包括神经退行性疾病)的新治疗方法铺平道路。