关于大脑记忆,最广为接受的观点认为,突触是记忆的存储点,记忆是通过突触的联想修改形成的。这一观点在概念和经验上受到了质疑。另一种观点认为,细胞体内的分子是记忆的存储点,记忆是通过对这些分子进行生化操作形成的。本文基于记忆的计算模型,综合了这两种观点。突触被认为是潜在原因的近似后验概率分布参数的存储点。细胞内分子被认为是生成模型参数的存储点。该模型规定了这两个组件如何作为学习和推理集成算法的一部分协同工作。
该学位包括52-54所需的学分:25个神经科学学分,来自各种参与部门的神经科学主题的选修学分6-8个学分,以及21个生物学,化学和心理学共同理由课程的学分。主修神经科学专业的学生通过参加独立学习课程作为其专业选修学分的一部分,参加动手研究。独立研究机会在参加坦普尔大学神经科学计划的各种学院和学校中的130多名神经科学家教师的实验室提供了机会。
背景巨噬细胞是免疫细胞的一个亚型,通过释放炎症和毒性介质对抗体内感染至关重要。然而,如果炎症持续存在,它们也会变得具有破坏性。这可能导致在各种炎症和自身免疫性疾病中观察到的严重组织损伤,例如类风湿性关节炎 (RA)、结肠炎和多发性硬化症 (MS),这些疾病目前尚无治愈方法。治疗此类疾病的方法包括使用限制炎症和免疫细胞复制的药物。事实上,仅 RA 的全球药物市场就估计为 250 亿美元。然而,这些治疗具有多种副作用,包括全身免疫抑制,这会使个体易受机会性感染和癌症的影响。此外,虽然目前的治疗方案在疾病的早期阶段限制了炎症,但潜在的组织损伤仍在继续发展。
气候变化将在未来几十年内从根本上重塑地球上的生命。因此,了解物种应对温度升高的程度至关重要。表型可塑性是生物体改变其基因组对环境所编码的形态和功能性状的能力。我在这里表明,可塑性不仅弥漫在天然的系统中,还可以模仿生物生物的发育过程,例如自我复制和不断发展的计算机程序 - 数字生物。具体来说,环境可以修改从数字有机体的基因组执行的指令顺序(即其转录组),这会导致其表型的变化(即数字有机体执行布尔逻辑操作的能力)。这种基于遗传的可塑性途径的适应性成本可以使生物体的生存能力和发电时间:转录组(较高的健身成本)越长,环境改变遗传执行流量控制的机会就越大,并且基因组对编码新表型的可能性越高。通过研究数字有机体的基因组和环境的影响在多大程度上,我在自然和人工化的系统之间建立了平行性,介绍了自然选择如何从整体环境控制到总基因组控制到总基因组控制的任何地方,从而使人们不仅可以更轻松地设计生物学的生物学,而且还要降低了对现实的人工体系的影响。
摘要我们报告了由单晶立方ktao 3中的位错介导的室温散装可塑性,与传统的知识形成了鲜明的了解,即单晶ktao 3容易受到脆性裂解的影响。使用环状Brinell凹痕,划痕和单轴体积压缩的基于力学的组合实验方法始终显示从Mesoscale到宏观尺度的KTAO 3中的室温脱位。这种方法还提供可调的脱位密度和塑性区域尺寸。扫描传输电子显微镜分析基于激活的滑移系统为<110> {1-10}。鉴于KTAO 3作为新兴的电子氧化物的意义越来越重要,并且对调谐氧化物物理特性的脱位的兴趣越来越大,我们的发现有望引发与脱位的KTAO 3的协同研究兴趣。
抽象阐明了突触分子(例如AMPA受体)如何介导神经元的通知并跟踪其行为过程中的动态表达对于了解认知和疾病至关重要,但是当前的技术障碍阻止了体内分子动力学的大规模探索。我们开发了一系列创新的方法论,这些方法突破了这些障碍:具有荧光标记的内源性AMPA受体的新敲蛋白小鼠系,在行为小鼠中成千上万个标记的突触的两光子成像,以及基于计算机视觉的自动突触检测。使用这些工具,我们可以纵向跟踪行为过程中突触种群的强度如何变化。我们使用这种方法来生成一个前所未有的详细时空图像突触的时空图,经历了感官体验的强度变化。更一般地,这些工具可以用作能够在任何行为范式中测量整个大脑区域的功能突触强度的光学探针,从而描述了分子精度的复杂系统范围的变化。
将残余应力效应纳入塑性、断裂和疲劳裂纹扩展模型以评估铝制船舶结构的可靠性 1.0 目标。 1.1 本项目的目标是开发一种经过实验校准和验证的计算工具,该工具可准确预测结构铝合金在残余应力影响下因疲劳和延性断裂而产生的塑性响应和失效。该数值工具不仅可用于铝制船舶结构的可靠性评估和生存力分析,还可用于制定船舶设计和优化的断裂控制计划。 2.0 背景。 2.1 近年来,计算力学的快速发展使工程师能够分析复杂的船舶结构、评估结构可靠性和优化结构设计。因此,对更精确的材料模型的需求变得越来越明显;特别是当最小化设计裕度成为重量优化或延长寿命的方法时。 2.2 船舶结构可能会受到大海或事故(如碰撞和搁浅)造成的极端载荷条件的影响。军用舰船在作战中还要承受严峻的载荷,在极端条件下,舰船结构可能会发生较大的塑性变形,这种变形可能是单调的,也可能是循环的,从而导致结构失效。2.3 到目前为止,绝大多数结构分析采用经典的 J 2 塑性理论来描述金属合金的塑性响应,该理论假设静水应力和应力偏量第三不变量不影响塑性行为。然而,越来越多的实验证据表明,J 2 塑性理论中的假设对许多材料来说是无效的。Gao 等(2009)注意到 5083 铝合金的塑性响应与应力状态有关,并提出了 I 1 -J 2 -J 3 塑性模型。2.4 等效断裂应变通常用作延性断裂准则,人们普遍认为它的值取决于应力三轴性(Johnson and Cook,1985)。然而,最近的研究表明,单独的应力三轴性不足以表征应力状态对延性断裂的影响。Gao 等人(2009)开发了一种应力状态相关的延性断裂模型,其中失效等效应变表示为应力三轴性和应力偏差的第三不变量的函数,并且针对 ABS Grade DH36 钢校准了该断裂模型。2.5 Gao 团队(Jiang, Gao and Srivatsan;2009)的先前研究开发了一种不可逆内聚区模型来模拟疲劳裂纹扩展。该模型已成功针对 7075 铝合金进行校准,并预测了紧凑拉伸剪切试样中的疲劳裂纹扩展。数值结果捕捉了加载模式和过载对疲劳裂纹扩展速率的影响。2.6 焊接接头广泛应用于船舶结构。然而,它们给建模和分析带来了很大的复杂性,例如母材、焊件和热影响区的材料行为和特性不同;焊趾处的几何不连续性(这会改变应力分布并导致焊趾处出现高应力)和残余应力。这些因素加剧了施加在底层材料上的局部应力,降低了不考虑此类影响的材料模型的准确性。焊缝通常不会在结构尺度上以这种详细程度建模,但由于这些原因,故障通常会在这个区域开始
神经可塑性和组织可塑性:人体和组织之间的类比类比通常用于说明复杂的概念。正如神经可塑性描述了大脑通过形成新的神经联系来响应经验或伤害来重组自己的能力一样,组织可塑性涉及重塑结构,过程和文化以应对新的挑战,机会和成长。在神经塑性中,突触连接可以通过重复使用并在不再需要时修剪来增强。同样,组织必须完善自己的实践,丢弃过时的过程,并加强与目标保持一致的行为。
超高性能钢筋混凝土 (UHPC) 是一种先进的水泥基材料,具有出色的机械性能、显著的耐久性和延展性。有限元 (FE) 分析速度快、价格合理,并且能够提供多种结果选项,因此可用于评估不同载荷下的各种结构系统。在市售软件中,ABAQUS 已被广泛用于模拟混凝土构件的行为。混凝土损伤塑性 (CDP) 模型是 ABAQUS 中的旗舰模型,也是唯一适合充分表示混凝土类材料的脆性、开裂和压碎破坏的本构模型。由于模型输入是专门为传统混凝土开发和校准的,因此它们可能不适用于 UHPC。特别是与剪切和拉伸行为相关的模型输入在传统混凝土和 UHPC 之间可能有所不同,前者中的骨料提供剪切机械联锁,而后者则缺乏这种联锁,而后者中的纤维提供拉伸桥接效应和显著的应变软化,而前者则不存在这种联锁。本研究旨在校准 UHPC 的 CDP 模型的各种参数,包括膨胀角 (ψ)、偏心率 (e)、应力比 (σbo/σco)、拉伸和压缩应力-应变 (σ-ε) 曲线。针对多个轴向压缩试验的验证分析表明,ψ = 55 ̊、σbo/σco = 3.00 和 e = 0.1 的值代表 UHPC 的最佳输入。在本研究中尝试的多个可用于 UHPC 的分析模型中,(a) Graybeal 的修改后峰后响应模型和 (b) Zhao 等人的模型在 ABAQUS 中实施时为 σ-ε 曲线提供了最佳性能。
在大脑发育的关键时期,神经元的可塑性会在整个生命过程中保持下去。因此,可塑性是大脑发育和学习的基础。可塑性可以通过阅读、音乐、艺术、体育、学习等认知要求高的活动来刺激。与更传统的方法(包括在临床环境中)相比,大脑学习新事件的能力可以得到进一步刺激或增强,这要归功于涉及反复执行精确设计的行为协议的特定训练。这些行为协议通常源自实验室环境,它们在开放环境中的可用性通常通过将它们嵌入到有趣的资源(包括所谓的严肃游戏)中来提高。这些行为协议的一个子系列将行为训练与对生理特征(例如心率(生物反馈)或皮质产生的信号(神经反馈))的实时定向控制相结合,以便参与者可以学会将这种反馈与他们正在产生的行为联系起来。具体来说,神经反馈是一种基于向参与者(无论是患者还是健康志愿者)提供在产生特定行为过程中的大脑功能信息的方法(图 1)。反馈给参与者的这些信息可以是与感兴趣的行为有因果关系的特定大脑区域的直接激活水平,也可以是反映更具体大脑功能的更精细的信息,例如功能连接测量或解码的大脑状态或认知信息。神经反馈已被证明可以触发积极的行为结果,例如缓解广告症状或改善特定的认知功能。这些积极的行为结果依赖于大脑可塑性机制和受试者终生学习的能力。因此,神经反馈被认为是一种