抽象的塑料污染已成为我们最普遍,最紧迫的环境问题之一,影响了全球生态系统,野生动植物甚至人类健康。微塑料研究主要集中于海洋,无论是在水,沉积物还是生物体中,都会在理解其存在和对河流等其他环境的影响方面产生巨大的差距,这是全球关注的问题,对我们在拉丁美洲和加勒比海中对我们来说至关重要。为了解决这种情况,我们通过进行关键字和布尔运营商的Google Scholar搜索来研究了有关南美河流中微塑料的当前研究,这使我们能够恢复与该主题相关的一系列文章。我们回顾了2023年发表的49篇文章,以了解收集和分析河流样品的方法。我们的发现揭示了有关南美微塑料的有限信息,仅来自阿根廷,巴西,哥伦比亚,厄瓜多尔,巴拉圭和秘鲁的数据。此外,我们发现样本收集和分析方法,阻碍研究比较的差异很大。弥合此知识差距对于理解该地区的塑性污染程度至关重要。由于河流是海洋的主要造成巨大造成贡献者,因此这项研究将大大帮助环境保护工作,强调解决河流塑料污染的全球相关性。
塑料由于其独特的特征和多功能性,很可能仍然是全球无处不在的材料。在循环且可持续的未来中,塑料是由可再生原料等可再生原料产生的,例如可回收的塑料,生物质和CO 2 /氢,需要转化全球价值链。用再生塑料产生新塑料是首选的途径,因为它是塑料废物的最佳用途。但是,即使全球回收率具有其理论潜力,也只能根据回收原料产生约60-70%的塑料体积,考虑生产,使用,收集,(BIO)降解,微塑性形成和回收率的产量的损失。因此,仍需要大量可持续处女塑料生产量来替代这些损失并满足不断增长的需求。基于生物量和CO 2的塑料是以圆形方式实现此目的的唯一剩下的选择。可以预期将在
微塑料对果阿旅游业果阿经济的影响很大程度上取决于旅游业,其海滩是主要的吸引力。景点原始的沙子和闪闪发光的海水长期以来吸引了国内和国际游客。但是,人们对环境降解的认识越来越多,尤其是关于塑料污染的意识,已经开始对果阿的吸引力。当地企业主,酒店运营和海滩供应商开始看到塑料污染的经济影响。访客变得越来越注重生态意识,有些人选择了更干净且具有更好可持续实践的其他目的地。微型塑料污染需要在战争的基础上解决,否则可能会严重破坏果阿的旅游收入。游客来果阿享受海滩,但塑料废物的景象
每个分析仪的特征表1显示了每种仪器的外观和特征。FTIR仪器用中红外光照射样品,并检测到进行定性和定量分析的光吸收程度。可以进行非破坏性测量,因此在FTIR测量后,可以使用另一种仪器再次分析样品。FTIR+ATR可以测量的MPS的大小为几百μm或更多。可以使用几个10秒的测量值对单个塑料进行分析。使用塑料分析仪,一个塑料分析系统,其中包括紫外线受损和受损的塑料库,即使是那些不熟悉分析的塑料库,也可以轻松地测量和分析在环境中降级的MP。py-GC-MS是一种瞬间热分解样品的仪器,通过柱子上的组件将蒸发的热解产物分离,并通过MS检测到它们。可以通过检测特定于每种塑料的热分解产品来进行定性和定量分析。由于测得的样品被热分解,因此无法对其进行分析。
Narendra Kumar S 1,Prathyush U 2,Sri Janane S v 3助理教授,生物技术,RV工程学院BE学生,部门摘要 - 传统基于石油的塑料的环境影响已经迫切需要可持续的替代方案。本文使用果皮(一种富含淀粉和纤维素的有机废料)研究了生物塑料的合成。该过程涉及化学提取,增塑和成型,以产生可生物降解的材料。测试揭示了生物降解性和机械性能的有希望的结果,尽管需要改善防水性。这项研究证明了基于水果果皮的生物塑料解决塑料污染并促进循环经济中的废物吹失的潜力。索引术语 - 生物塑料,果皮,可持续性,生物降解性
食品和水中的微塑料(MP)污染构成了重大健康风险。虽然形成生物膜的微生物显示出从环境中去除MP的潜力,但目前尚无方法从人体中消除这些不可降解的MP。在这项研究中,我们建议使用益生菌吸附并去除肠内摄入的MP。我们使用高通量筛选方法对784种细菌菌株进行了全面评估,以评估其吸附0.1μm聚苯乙烯颗粒的能力。在测试菌株中,乳酸乳杆菌DT66和lactiplantibacillus plantarum dt88在体外表现出最佳的吸附,并且在各种MP类型中均有效。在动物模型中,用这些益生菌治疗的小鼠表明PS排泄率增加了34%,肠内残留聚苯乙烯(PS)颗粒的降低了67%。此外,乳杆菌DT88的给药减轻了PS诱导的肠炎。一起,我们的发现展示了一种用于解决MP相关健康风险的新型益生菌策略,强调了特异性益生菌从肠道环境中去除MP的潜力。
营养中的微型塑料(MP)含量包括饮用水,尽管瓶装水品牌中的MP浓度在几个数量级上发散。欧盟指令2020/2184最近提出的方法学方法是在20–5000μm的尺寸范围内检测MPS的方法。但是,在1-20μm范围内的精细MP更有可能将人类肠道传播到血液和器官中。为了评估这种省略对检测到的MPS总数的影响,我们使用自动的拉曼微光谱法确定了十个不同品牌的聚乙二醇酯(PET)瓶装水和1个自来水样品的MP浓度。我们发现,MP浓度范围为19至1,154(N/L)[0.001至0.250μg/L],尽管所有研究的瓶装水样品都存储在PET容器中,但在大多数SAMPER中,PET仅占MPS的一小部分。重要的是,98%和94%的MP的直径小于20和10μm,这表明了小型MP纳入饮用水分析和调节的重要性。当前的研究提出了一项方案,可在任何类型的饮用水中识别出MPS,无论硬度如何,并证明了实施负面和正面程序性,质量控制措施的重要性。
全球环境中微塑料和纳米塑料 (MNP) 浓度不断上升,引发了人们对人类接触和健康结果的担忧。用于稳健检测组织 MNP 的补充方法,包括热解气相色谱-质谱法、衰减全反射-傅里叶变换红外光谱法和带能量色散光谱的电子显微镜,证实了人类肾脏、肝脏和脑中存在 MNP。这些器官中的 MNP 主要由聚乙烯组成,其他聚合物的浓度较少但很重要。与肝脏或肾脏中的塑料成分相比,脑组织中聚乙烯的比例更高,电子显微镜证实了分离的脑 MNP 的性质,它们主要呈现为纳米级碎片状碎片。这些死亡组织中的塑料浓度不受年龄、性别、种族/民族或死因的影响;死亡时间(2016 年 vs. 2024 年)是一个重要因素,肝脏和脑样本中的 MNP 浓度随时间推移而增加(P = 0.01)。最后,在一组有痴呆症诊断的死者脑中观察到了更大的 MNP 积累,脑血管壁和免疫细胞中明显沉积。这些结果强调,迫切需要更好地了解塑料在人体组织(尤其是脑)中的暴露途径、吸收和清除途径以及潜在的健康后果。
微塑料和纳米塑料是全球重要的环境污染物。尽管该领域的研究在不断改进,但在淡水系统中微颗粒和纳米颗粒的影响评估中存在许多不确定性、不一致性和方法学挑战。目前对不利影响的理解部分受到使用不相关的颗粒类型、不合适的测试设置和不切实际的环境剂量指标的影响,这些指标没有考虑到颗粒吸收的实际过程及其随之而来的影响。在这里,我们通过汇编最新的研究来总结当前的技术水平,旨在强调研究差距和实现更协调的测试系统所需的进一步步骤。特别是,生态毒理学情景需要反映环境现实的颗粒多样性和生物利用度。协调的测试设置应包括不同的吸收途径、暴露和与天然参考颗粒的比较。效果评估需要区分直接物理颗粒效应(例如由聚合物引起的损伤和毒性)和间接效应(例如通过浸出改变周围环境条件、改变浊度、稀释食物和改变生物行为)。实施这些建议有助于协调和更有效、基于证据地评估微塑料和纳米塑料的生态毒理学效应。