解决碳纤维增强热塑性塑料的废物管理时,我们回顾了不同的回收路线,强调了碳纤维增强的聚醚酮(CF-PEEK)的机械回收途径。CF-PEEK最有前途的方案是机械粉刺,其次是长纤维增强的热塑性压缩成型。主要原因是成本效益和较低的环境影响,因为它保留了有价值的矩阵,同时具有良好的机械性能。在本文中,我们总体上讨论了机械回收途径,然后专注于压缩成型步骤。此外,我们探讨了对机械性能的影响,以洞悉机械回收CF-PEEK的潜在应用领域。我们还回顾了压缩成型过程中CF-Peek化学降解对回收酸盐整体性能的影响。理解回收过程中纤维,基质和纤维矩阵界面的机制和变化对于优化过程和最大化回收周期的数量至关重要。
1 水生生物学部门,阿布鲁佐和莫利塞“朱塞佩·卡波拉莱”动物实验研究所 (IZS Teramo) – 意大利泰拉莫 2 霉菌毒素、植物毒素和海洋生物毒素部门 (IZS Teramo) – 意大利泰拉莫 3 国家兽医流行病学、规划、信息和风险分析参考中心 (COVEPI) (IZS Teramo) – 意大利泰拉莫 4 国家活体双壳贝类微生物和化学控制参考中心 (CE.RE.M),翁布里亚和马尔凯动物实验研究所 (IZSUM) – 意大利佩鲁贾 5 微电子和微系统研究所,国家研究委员会 (IMM-CNR) – 意大利罗马 6 帕多瓦大学 – 生物学系 (UNIPD) – 意大利帕多瓦 7 克罗地亚兽医研究所 (CVI) – 克罗地亚斯普利特 8 水生生物学意大利泰拉莫,阿布鲁佐和莫利塞“朱塞佩卡波拉莱”实验动物预防研究所 (IZS Teramo) 单位 9 泰拉莫大学,生物科学和农业食品与环境技术学院 (UNITE) 10 意大利泰拉莫,渔业和水产养殖区域实验中心 (IZS Teramo)
摘要:由于迅速的工业化,人口增长和使用现代技术的进步,传统塑料的合成在过去几十年中大大增加了。但是,这些化石燃料的塑料过度使用通过造成污染,全球变暖等,从而造成了严重的环境和健康危害。因此,将微藻用作原料是一种有希望的,绿色和可持续的方法,用于生产生物塑料。可以在不同的微藻菌株中生产各种生物聚合物,例如聚羟基丁酸,聚氨酯,聚乳酸,基于纤维素的聚合物,基于淀粉的聚合物和基于蛋白质的聚合物。不同的技术,包括基因工程,代谢工程,光生反应器的使用,反应表面方法论和人工智能,用于改变和改善微藻库存以较低的成本以较低的成本合成生物塑料的商业合成。与常规塑料相比,这些生物基塑料具有可生物降解,可生物相容性,可回收,无毒,环保和可持续性,具有可靠的机械和热塑性性能。此外,生物塑料适用于在农业,建筑,医疗保健,电气和电子以及包装行业中的大量应用。因此,本综述着重于微藻生物聚合物和生物塑料的技术。此外,还提供了一些影响工业规模生物塑料生产和未来研究建议的挑战。此外,它还讨论了大规模生物塑性生产的创新和有效策略,同时还为生命周期评估,寿命和生物塑料的应用提供了见解。
摘要:每年超过100万吨的塑料生产引起了全球关注。组成的低密度聚合物可以通过消化,吸入和皮肤接触来诱导器官毒性,并在大距离上扩散和微/纳米颗粒(MNPLS)。颗粒已在包括母乳在内的所有人体组织中进行了记录。MNPL,尤其是风化的颗粒,可以破坏血脑屏障,从而诱导神经毒性。这已经在非人类物种和人类诱导的多能干细胞系中进行了记录。在大脑中,MNPLS通过促炎性细胞因子的产生,活性氧的产生和线粒体功能障碍引发炎症反应,氧化应激。谷氨酸和GABA神经递质功能障碍也随着兴奋性/抑制性平衡的改变而随之而来,有利于减少抑制作用和导致的神经激发。炎症和皮质过度兴奋性是肌萎缩性侧面硬化症(ALS)的致病性级联反应的关键异常,并且与TDP-43的错误定位和聚集无关,ALS的标志是ALS的标志。水和许多食物含有MNPL,在人类中,摄入是暴露的主要形式。肠道内塑料的消化可以改变其性质,使它们更具毒性,并引起肠道微生物组营养不良和功能失调的肠脑轴。这被认为是ALS的触发因素和/或加重因素。als与长期(数年或几十年)的临床前时期有关,新生儿和婴儿通过母乳,牛奶替代品和玩具暴露于MNPL。这危害了一个激烈的神经发生和神经元电路的建立时代,为后来的神经变性奠定了基础。MNPL神经毒性应被视为ALS和相关疾病的尚未认可的危险因素。
1 State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China 2 Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, CA 94305, USA 3 Plasticentropy, rue Thiers 28, Reims 51100, France 4 Department of Entomology and Department of Osteopathic Medical Specialties, Michigan州立大学,东兰辛,密西西比州48824,美国5环境研究学院科钦科学技术大学,高知,高知682022,印度6号,6682022,682022,北北部科学与技术大学化学工程系,波港科学与技术大学,韩国共和国7673,韩国环境科学与工程学院7中国9号生态与环境科学学院北京有限公司,东中国师范大学,上海,200241年,中国10,北京大学研究所,北京大学,北京100191,中国环境学院11,北京大学环境学院
从历史的角度来看,20世纪塑料生产行业的快速扩展。由于塑料的成本较低和适应性,因此可以使用多种用途。生物塑料之所以开发,是因为塑料不可生物降解,并且已被证明对人,动物和环境产生有害影响。生物塑料可能是由可再生生物来源产生的,并且是可生物降解的。同样的用途适用于塑料的生物塑料。生物塑料可能来自各种来源,包括植物,动物和微生物,但它们在几种方面受到限制,包括无法获得大型生物量以及与耕种相关的挑战。与需要特定耕种环境的其他微生物来源相比,海藻具有高生物质,可以在各种环境中生长,并且可以在自然环境中培养,这使它们成为在这些情况下生产生物塑料的替代方法之一。海藻也具有便宜的优势,对食物链的影响很小,而不需要任何化学物质。已经观察到,海藻衍生的生物塑料较不脆,更健壮,对微波辐射具有抗性。现在正在进行开发生产基于海藻的生物塑料所需的技术,但是预计生物塑料部门的实质取得了很大的进步,将来能够生产基于海藻的生物塑料。作为一种实际替代品,发酵和基因工程可以通过使用尖端方法从海藻生产生物塑料方面的道路。在本文中讨论了海藻作为生物塑料的替代来源的重要性,利益和用途。
塑料通常在日常生活和工业生产中使用,因为它们负担得起,轻巧,耐用,柔性和防水优势[1]。自1950年代以来,全球塑料产量逐年上升,从1950年的150万吨增加到到2021年的390.7万吨,预计到2050年,年度塑料产量预计将达到112.4亿吨[2]。塑料产品的广泛使用和不正确的回收利用导致了相当多的塑料垃圾。大多数塑料废物被焚化,倾倒在垃圾填埋场中,并释放到环境中,导致其在生态系统中的普遍存在。塑料的化学特性相对稳定,在自然条件下很难生物降解。当他们进入生态系统时,它们将存在数十年甚至数百年,形成塑料污染,并在通风,研磨和生物降解后,它们将产生MPS [3]。MPS是塑料碎片,大小小于或等于5 mm [4]。它们以珍珠,碎片,纤维和薄膜形状的形式存在于环境中,主要类型是聚乙烯(PE),聚乙烯基氯化物(PVC),聚苯乙烯(PS)等。MP具有尺寸较小的特征,并且具有稳定的化学特性。他们可能会长期留在自然环境中,这会对生物体的生命活动和生态安全产生负面影响,但在被生物消耗后,它们也可能会将食物网和人体流入人体,并可能危及人类健康。微生物可以发挥生产者的作用,因此,探索环境媒体中微塑料的环境行为和控制技术已成为一个流行的研究问题。近年来,对国会议员的研究重点是评估其对生态系统功能的影响。
我们可以通过追踪塑料整个生命周期的隐性、直接和间接成本来了解塑料的真实成本,包括:直接成本(清理和废物管理);间接成本(医疗费用增加、洪水、碳排放、旅游业和渔业减少等);以及未补偿的成本(生产力损失、生态系统服务损失等)。Forrest 等人估计,塑料污染相关的社会和环境成本高达每年 2.2 万亿美元,其中包括海洋污染、气候影响、土地污染、水资源利用、空气污染和土地不舒适度。世界自然基金会 (WWF) 的另一项估计是,塑料整个生命周期的成本为 3.7 万亿美元,包括与海洋生态系统服务损失、终生温室气体 (GHG) 排放和废物管理相关的成本。
海洋的塑料污染是最大的环境问题。可生物降解的塑料在打击塑料污染的积累中具有潜在的“溶解性”,其产量目前正在增加。尽管这些聚合物将有助于未来的塑料海洋碎片预算,但关于在不同自然环境中可生物降解塑料的行为知之甚少。在这项研究中,我们在实验室上对整个微生物群落进行了分子,确认可生物降解的聚丁乙烯甲酸甲酸酯 - 甲甲酸盐(PBSET)和多羟基丁酸(PHB)(PHB)膜(PHB)膜,以及非生物降落的常规沿环境层次的层次,这些层次是层次的层次,这些层次是均不同的,这些层次是差异的。 海。在22个月的孵育期间,在五个时间点中取出了骨,底栖和效等栖息地的样品。我们评估了潜在的生物降解细菌和真菌类群的存在,并将它们与这些聚合物的原位瓦解数据进行了对比。扫描电子显微镜成像构成了我们的分子数据。假定的塑料降解器发生在所有环境中,但没有明显的