摘要是由于最近对教育机器人技术的兴趣爆炸(ER)的爆炸,本文试图通过提出新的思考和探索相关概念的新方法来探讨这一领域。本文的贡献是四倍。首先,未来的读者可以将本文用作探索教育机器人技术的预期学习成果的参考点。从详尽的潜在学习收益列表中,我们提出了一组六个学习成果,可以为机器人活动设计的可行模型提供一个起点。第二,本文的目的是作为最近的ER平台的调查。在越来越多的可用机器人平台的驱动下,我们收集了最新的ER套件。我们还提出了一种对平台进行分类的新方法,该平台没有制造商的模糊年龄范围。所提出的类别(包括无代码,基本代码和高级代码)源自学生需要有效地使用它们的先验知识和编程技能。第三,随着ER竞赛的数量和比赛与ER平台的增加同时增加,该论文介绍并分析了最受欢迎的机器人事件。机器人竞赛鼓励参与者在促进特定学习成果的同时发展和展示自己的技能。本文旨在提供这些结构的概述并讨论其效率。最后,本文探讨了提出的ER竞争的教育方面及其与六个拟议的学习成果的相关性。这提出了一个主要特征组成竞争并实现其教学目标的问题。本文是第一项研究,将潜在的学习收益与我们的竞争与我们的最佳知识相关联。
半导体材料为量子技术 (QT) 提供了一个引人注目的平台。然而,在众多候选材料中识别出有前途的材料主体是一项重大挑战。因此,我们开发了一个框架,使用材料信息学和机器学习方法自动发现用于 QT 的半导体平台。我们实施了不同的方法来标记数据,以训练监督机器学习 (ML) 算法逻辑回归、决策树、随机森林和梯度提升。我们发现,完全依赖文献研究结果的经验方法会明显区分预测的合适和不合适的候选材料。与文献中将带隙和离子特性作为 QT 兼容性的重要特性的预期相反,ML 方法强调了与对称性和晶体结构相关的特征,包括键长、方向和径向分布,因为这些特征在预测材料是否适合 QT 时很重要。
Brian Drake 是国防情报局未来能力与创新办公室的人工智能主任。他领导该机构的人工智能研究和开发投资组合。作为一名分析师,他领导多个团队应对来自国家和非国家行为者的威胁,涉及技术、反情报和禁毒主题。他曾担任德勤咨询公司的经理和托夫勒联合公司的管理顾问,专门为商业和政府客户提供战略规划、业务发展、合作咨询、技术和创新服务。他还曾担任系统规划和分析公司的军事平台和政策分析师以及 DynCorp 的核武器计划分析师。他拥有默瑟大学的文学学士学位和乔治城大学的硕士学位。除了他的官方职责外,他还是国防情报纪念基金会的总裁兼首席执行官;为阵亡国防情报官员的子女设立的奖学金基金。
摘要:过去二十年来在数字平台上出现的超级目标广告现在被更有效地理解为调整广告,这是一个充满活力且不断发展的过程,在该过程中,广告在实时对用户进行了不断地“优化”广告。在Rieder和Hofmann(2020)之后,我们旨在为“观察练习”算法调整的数字广告制定一个框架。我们借鉴了澳大利亚广告天文台的研究以及关于数字酒精广告的多年研究项目。在这些项目中,我们构建了自定义的工具,以从平台广告库中收集广告,并通过公民科学家的数据捐赠。我们认为,数字广告的力量越来越符合其调整的能力。平台的广告透明度工具引起了我们对广告的关注,但是我们需要发展能够观察动态的社会技术调整过程的能力。我们概念化了广告的“调谐序列”的可视化,作为广告“库”的替代方法。我们认为,开发观察这些调谐序列的能力更好地阐明了建立公众理解和问责制所需的观察方式,他们都在寻找公众的理解和问责制。
空间实验在技术上具有挑战性,但是天文学和星体化学研究的科学重要组成部分。国际空间站(ISS)是一个非常成功且持久的研究平台的太空实验的一个很好的例子,在过去的二十年中,它提供了大量的科学数据。但是,未来的太空平台为进行实验提供了新的机会,该实验有可能解决天体生物学和星体化学领域的关键主题。从这个角度来看,欧洲航天局(ESA)主题团队天文学和星体化学(带有更广泛的科学社区的反馈)确定了许多关键主题,并总结了2021年的“ ESA Scispace Scipace Science Community Community Community White Paper”《天体生物学和星体化学》。我们重点介绍了未来实验的开发和实施的建议,讨论原位测量,实验参数,暴露场景和轨道的类型,以及确定知识差距以及如何提高目前正在开发或高级计划阶段的未来太空曝光平台的科学利用。除了国际空间站外,这些平台还包括立方体和小萨特人,以及较大的平台,例如月球轨道门户。我们还为月球和火星上的原位实验提供了前景,并欢迎新的可能性支持搜索我们太阳系内外的系外行星和潜在的生物签名。
抽象的消费者生成的评论在建立信任和促进数字平台上的交易方面起着决定性的作用。但是,先前的研究表明了各种问题,例如,只有少数提供评论,伪造评论和不确定的评论的消费者。我们在餐厅预订平台的背景下使用一个实验来研究不一致的评论对消费者交易决策期限的影响。在第二个实验中,我们研究了审查不一致的情况下的审查组件的相对重要性。利用双重过程理论和媒体丰富性理论,我们预测不一致的评论会导致消费者交易决策(H1)所需的更长的时间,并导致用户的交易决策主要基于定性组成部分(H2)。尽管我们没有找到不一致的餐厅评论对交易决策的持续时间不一致的一般支持,但我们发现证据表明,对于不一致的餐厅评论,定性组成部分的极性对于交易决策的持续时间和决策本身至关重要。
建议引用:Mendieta-Aragón,Adrián;劳拉(Laura)Rodríguez-Fernández; Navío-Marco,Julio(2023):欧洲数字合作经济平台的旅游业使用:数字政策的情况,行为和影响,第32届欧洲国际电信协会会议(ITS):“实现欧盟数字十年 - 在欧盟的数字十年 - 更容易完成?”,马德里,西班牙,2023年6月19日至20日,国际电信协会(ITS),卡尔加里
摘要:过去二十年来在数字平台上出现的超级目标广告现在被更有效地理解为调整广告,这是一个充满活力且不断发展的过程,在该过程中,广告在实时对用户进行了不断地“优化”广告。在Rieder和Hofmann(2020)之后,我们旨在为“观察练习”算法调整的数字广告制定一个框架。我们借鉴了澳大利亚广告天文台的研究以及关于数字酒精广告的多年研究项目。在这些项目中,我们构建了自定义的工具,以从平台广告库中收集广告,并通过公民科学家的数据捐赠。我们认为,数字广告的力量越来越符合其调整的能力。平台的广告透明度工具引起了我们对广告的关注,但是我们需要发展能够观察动态的社会技术调整过程的能力。我们概念化了广告的“调谐序列”的可视化,作为广告“库”的替代方法。我们认为,开发观察这些调谐序列的能力更好地阐明了建立公众理解和问责制所需的观察方式,他们都在寻找公众的理解和问责制。
方法:在麻醉的雄性新西兰白兔子(n = 44)的角膜中诱导碱性燃烧(直径8毫米),将浸入1M NaOH的滤纸持续60 s。立即用平衡的盐溶液冲洗角膜后,伤口接到:(1)未治疗; (2)AM移植;或(3)基于加载AM蛋白提取物(AME)的金硫代酸盐的动态透明质酸水凝胶;或(4)带有相同AME的物理交联的眼水凝胶插入物。对侧未受伤的眼睛用作对照。在显微照片中评估了伤口区域和愈合角膜的比例。此外,通过苏木精 - 欧生和Masson的三色染色评估了角膜组织学,检查上皮和基质厚度,内皮层以及早期(第2天)和愈合阶段的早期(第2天)(第2天)。
权利版权©作者2021。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。