本文量化了数字平台中监管佣金费用的福利效应,重点是第三方应用程序开发人员的创新和定价决策。我从2018年10月至2024年2月在美国的Apple App Store中采用了音乐应用程序的全面数据集,以估算应用程序用户的需求和应用程序开发人员的成本参数。本文通过三个政策反事实模拟揭示了关键发现,我依次求解了最佳的创新和定价决策。首先,佣金的上限促进了第三方应用程序开发人员的创新努力,并改善了社会福利。第二,当平台在费用上限下添加单位费用计划时,开发人员通过提高应用内购买价格将部分将单位费用传递给应用程序用户。第三,平台对流媒体应用程序的假设收购导致了被收购应用程序的创新工作和市场份额的显着下降。值得注意的是,与全阶段模型估计相比,预计没有质量调整的福利分析将低估了费用上限对社会福利的影响0.91%-2.06%。这项研究强调了在评估数字平台中的监管干预时考虑质量变化以及价格波动的重要性。
由于高性能商用现货 (COTS) 计算平台的技术进步,空间计算正在蓬勃发展。太空环境复杂且具有挑战性,具有尺寸、重量、功率和时间限制、通信限制和辐射效应。本论文提出的研究旨在研究和支持在空间系统中使用 COTS 异构计算平台进行智能机载数据处理。我们研究在同一芯片上至少有一个中央处理器 (CPU) 和一个图形处理单元 (GPU) 的平台。本论文提出的研究的主要目标有两个。首先,研究异构计算平台,提出一种解决方案来应对空间系统中的上述挑战。其次,使用新颖的调度技术补充所提出的解决方案,用于在恶劣环境(如太空)中在 COTS 异构平台上运行的实时应用程序。所提出的解决方案基于考虑使用并行任务段的替代执行的系统模型。虽然将并行段卸载到并行计算单元(如 GPU)可以改善大多数应用程序的最佳执行时间,但由于过度使用 GPU,它可能会延长某些应用程序中任务的响应时间。因此,使用所提出的任务模型是减少任务响应时间和提高系统可调度性的关键。基于服务器的调度技术通过保证 CPU 上并行段的执行时隙来支持所提出的任务模型。我们的实验评估表明,与应用程序的静态分配相比,所提出的分配可以将实时系统的可调度任务集数量增加高达 90%。我们还提出了一种使用基于服务器的调度和所提出的任务模型的动态分配方法,该方法可以将可调度性提高高达 16%。最后,本文提出了一个模拟工具,支持设计人员使用所提出的任务模型选择异构处理单元,同时考虑处理单元的不同辐射耐受性水平。
政策声明 PS21/3 列出了我们关于构建运营弹性的最终规则和指导,企业应该熟悉这些规则和指导。这些规则和指导将于 2022 年 3 月 31 日生效,规定适用的企业必须确定其重要的业务服务,以实现运营弹性。企业必须将影响容忍度设定在中断会对消费者造成无法容忍的伤害或对市场完整性造成风险的程度。企业必须规划支持其重要业务服务的资源,并测试其在一系列严重但可能发生的事件中保持影响容忍度的能力。企业必须制定沟通策略,以快速有效地应对运营中断。企业应编制并定期审查一份自我评估文件,该文件显示他们如何满足我们的运营弹性要求。该文件应应要求提供给我们。
人们对量子计算的兴趣日益浓厚,随之而来的是软件平台对开发量子程序的重要性。确保此类平台的正确性非常重要,这需要彻底了解它们通常存在的错误。为了满足这一需求,本文首次深入研究了量子计算平台中的错误。我们从 18 个开源量子计算平台收集并检查了 223 个真实错误。我们的研究表明,这些错误中有相当一部分(39.9%)是量子特有的,需要专门的方法来预防和发现它们。这些错误分布在各个组件中,但量子特有的错误尤其经常出现在表示、编译和优化量子编程抽象的组件中。许多量子特有的错误表现为意外输出,而不是更明显的不当行为迹象,例如崩溃。最后,我们提出了一个反复出现的错误模式层次结构,其中包括十种新颖的量子特有模式。我们的研究结果不仅表明了量子计算平台中错误的重要性和普遍性,而且还可以帮助开发人员避免常见错误,并帮助工具构建者应对预防、发现和修复这些错误的挑战。
摘要 Itoh-Tsujii 逆算法在椭圆曲线密码等密码应用中寻找逆元方面做出了重要贡献。本文提出了一种新的 Hex Itoh-Tsujii 逆算法,用于在现场可编程门阵列 (FPGA) 平台上高效计算由 NIST 推荐的不可约三项式生成的二进制域的乘法逆元。基于 Hex Itoh Tsujii 逆算法的所提架构由十六进制电路和四重加法链构成。这种组合提高了资源利用率。实验结果表明,与现有实现相比,所提出的工作具有更好的面积时间性能。关键词:现场可编程门阵列 (FPGA)、Itoh-Tsujii 逆算法 (ITA)、查找表 (LUT)、有限域 (FF) 分类:集成电路(存储器、逻辑、模拟、射频、传感器)
认知研究传统上使用低维测量和刺激呈现,强调实验室控制,而不是反映日常生活活动和互动的高维(即生态有效)工具。虽然实验室中受控的实验呈现增强了我们对健康和临床队列的认知的理解,但高维可能会扩展现实和认知。高维元宇宙方法使用具有动态刺激呈现的扩展现实 (XR) 平台,将人类和模拟技术结合起来以扩展认知。本文的计划如下:“从低维到高维的认知研究扩展”部分讨论了当前对反映日常认知活动的高维刺激呈现的需求。在“算法设备和认知的数字扩展”部分,介绍了扩展心智的技术,并将元宇宙作为扩展的候选认知过程。接下来,在“理解扩展心智技术的神经认知框架”部分,提出了一个框架和模型,用于理解人类技术耦合的神经关联,包括自动算法过程(边缘-腹侧纹状体环路)、反射认知(前额叶-背侧纹状体环路)和算法处理(岛叶皮层)。人机交互的算法过程可以随着时间的推移成为大脑和技术的自动化和算法耦合。本文最后简要总结并讨论了 Metaverse 可用于研究人们如何在模拟现实世界活动和互动时对高维刺激做出反应的方式。
摘要电子健康(EHealth)已成为现代医疗保健变化的关键驱动力,重塑了收集,处理和利用医疗信息的方式。e-Health包括旨在改善医疗保健提供,管理和可访问性的数字解决方案。医学互联网(IOMT)特别专注于建立医疗设备和传感器之间的连接,以收集和传输与健康相关的数据。其主要目标是通过促进实时监控,采用数据分析并整合智能医疗设备来增强医疗保健。IOMT,更广泛地,eHealth正在产生积极的结果,促使其扩展到动物领域的应用。最近的技术进步有助于健康平台的整合,从而促进了人类和动物健康之间的联系以改善幸福感。本文介绍了一个概念框架,该框架综合了中间数据采集管道中的主要活动。该框架是从对人类医疗保健IOMT领域中最新技术的分析得出的。此外,本文探讨了eHealth概念在动物领域的应用。在解决人类和动物健康方面,本文总结了这些技术将这些技术完整整合到日常生活中所需的杰出问题。
反映了广泛的国家需求,该国平台方法考虑了能源过渡以外的其他气候行动领域。除了对喷气机的广泛支持和持续的支持外,MDB还加入了由埃及,北马其顿和孟加拉国发起的几个国家 /地区平台的开发和实施。这些平台直接基于与客户国家的现有MDB关系,涉及国际捐助者,发展社区和其他参与者,并具有广泛的部门焦点领域。例如,在埃及的情况下,它重点介绍了该国为其气候和发展优先领域的一部分而确定的食物,水和能源的联系。埃及国家平台因此有助于缓解气候变化,适应和弹性,仅在整个能源,运输,水和农业领域的过渡和更广泛的环境目标。
摘要胶质母细胞瘤(GBM)是最常见的原发性颅内肿瘤,中位生存时间不到两年。GBM的部分定义是通过广泛的细胞浸润到大脑的三维组织,破坏关键的大脑结构并使完全消除肿瘤的完全消除。对限制侵袭的治疗的搜索受到了缺乏培养范例的限制,这些培养范式概括了脑基质的重要方面,同时允许对侵入性细胞的高分辨率表征。我将描述我们团队介绍和利用此类模型的努力,包括我们使用三维透明质酸基质在体外种植肿瘤,分离侵袭性肿瘤细胞,并识别驱动侵袭的可靶向病变。这些方法的一个重要优势是能够对患者的现场指导活检进行基准发现,以确保最大的临床相关性。
分销语句A.已批准公开发布。分布是无限的。该材料基于国防部研究和工程部长,国防高级研究计划局和国防部根据空军合同编号FA8702-15-D-0001。本材料中表达的任何意见,发现,结论或建议是作者的意见,不一定反映了