1基因组编辑实验室,莫斯科,俄罗斯,2科学和教育资源中心,俄罗斯人民大学,莫斯科,俄罗斯友谊大学,俄罗斯,3个细胞技术系,莫斯科,莫斯科,俄罗斯,俄罗斯,俄罗斯4个实验室,莫斯科,俄罗斯,莫斯科,俄罗斯,莫斯科,莫斯科。遗传性遗传学研究中心,俄罗斯,俄罗斯6干细胞遗传学实验室,医学遗传学研究中心,俄罗斯,俄罗斯7科学和临床纤维化局,俄罗斯医学遗传学研究中心,俄罗斯州莫斯科研究中心,俄罗斯研究机构8级研究中心,俄罗斯研究中心,俄罗斯研究中心,俄罗斯研究中心,俄罗斯研究中心研究流行病学和微生物学中心以俄罗斯卫生部的荣誉院士n f gamaleya命名,俄罗斯莫斯科
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
。CC-BY 4.0国际许可证。是根据作者/资助者提供的预印本(未经Peer Review的认证)提供的,他已授予Biorxiv的许可证,以在2024年2月4日发布的此版本中显示在版权持有人中的预印本。 https://doi.org/10.1101/2024.02.01.578414 doi:Biorxiv Preprint
旨在表征和研究调控性数量性状基因座 (QTL) 的研究也揭示了个体之间的表型差异,包括疾病风险和药物反应的差异。调控性 QTL 效应高度依赖于环境,可能仅在特定条件下表现出来。原则上,诱导性多能干细胞 (iPSC) 可以分化成体内的任何细胞类型,当与单细胞 RNA 测序相结合时,iPSC 能够在不同环境中大规模映射调控性 QTL。挑战在于找到一种方法来快速扩展我们可以表征的细胞类型和细胞状态的维度。为了解决这个问题,我们开发了一种引导式 iPSC 分化方案,可以快速生成时间和功能各异的心脏相关细胞类型。在短短 8-10 天内,我们就能持续复制在费力的定向分化时间进程研究中看到的心脏祖细胞,以及成熟心脏类器官中存在的终末细胞类型。利用引导分化,人们可以快速表征空间和时间多样化的心脏细胞类型中的调控变异和基因与环境的相互作用。
红细胞(RBC)目前被用作输血医学和诊断目的的重要生物医学产品。covid-19 - 相关的血液短缺,1种需求增加,2个安全挑战以及针对RBC表型的特定要求3已使全球需要替代志愿血液捐赠的替代品,包括Ex Vivo和RBC的体外制造。4-6人类诱导的多能干细胞(IPSC)是产生血液产物的有吸引力的来源,因为它们可以有效地分化为红细胞细胞,可能提供无限的RBC来源。7,8此外,由于它们适合基因编辑,因此可以设计IPSC,以表达9种特定的血液类型9(包括“通用”供体O-10)或用于药物输送的受体,除了提供疾病模型和基础研究的平台外,还有11、12。
诱导的多能干细胞(IPSC)衍生的T(IT)细胞代表了具有工程T细胞的养子池疗法中的突破性边界,并准备克服与常规制造方法相关的关键限制。IPSC提供了现成的治疗性T细胞来源,具有有限膨胀和直接遗传操作的潜力,以确保通过嵌合抗原受体(量子)引入特定的治疗功能,例如抗原特异性的特异性治疗功能。重要的是,IPSC的基因工程提供了产生对严格安全评估的完全修改的克隆线的好处。对利用IT细胞的潜力至关重要的是开发坚固且临床上兼容的生产过程。目前用于基因工程的方案以及旨在反映人类造血和T细胞发育的分化方案,其效率各不相同,并且通常包含不合格的组件,从而使它们不适合临床实施。这项全面的审查集中在过去十年中取得的显着进展,从而在IPSC中产生功能性的T细胞。重点是与良好的制造实践(GMP)标准,可伸缩性,安全措施和质量控制的对齐,这构成了临床应用的基本先决条件。总而言之,对IPSC作为来源的关注承诺标准化,可扩展,临床相关且可能更安全地生产工程的T细胞。这种开创性的方法具有将希望扩展到更广泛的患者和疾病的潜力,在收养T细胞疗法方面的新时代领先。
抽象的胚胎干细胞具有无限制分裂的能力,并且是多发的,并且可以从三层新芽中区分细胞。高桥和山内卡(Yamanaka)在2006年的实验表明,可以通过添加一系列因子,即OCT4,SOX2,KLF4和C-MYC(Yamanaka因子)来获得诱导的多能干细胞(IPS细胞)。撰写本文评论的目的是回顾使用Yamanaka因素在获取社会研究细胞以造福临床使用的情况下的发展和挑战。文献搜索是通过在2006年至2019年浏览发表的期刊来进行的,该期刊讨论了与Yamanaka因素的产生社会研究细胞的生产。文献搜索结果表明,该因子是可以与染色质结合并导致染色质区域的先驱因子,并引起基因表达的激活或抑制。 C-MYC与参与细胞代谢,细胞周期法规和生物合成途径的基因结合。OCT4,SOX2和KLF4靶向编码发育和转录调节剂的基因。具有Yamanaka因子的体细胞诱导机制需要进一步搜索。到目前为止,社会研究细胞是由各种细胞产生的,并且有可能治疗各种疾病。来自社会研究细胞的临床试验已得到食品药品管理局(FDA)的批准。IPS细胞的应用具有许多障碍,例如效率低,高变异性和所使用的向量会导致突变。因此,为了获得有效,有效和安全的方法,需要进一步的研究与使用的方法相关。
平台,它可以通过DNA结合CAS和DNA修饰脱氨酶组成的基础编辑器的模块化组件,该基础编辑器通过在序列靶向指导指南RNA(GRNA)中编码的适体相关的Deaminase组件组成。由于适体依赖于脱氨酶成分靶向DNA序列,PIN点平台唯一地允许多对单个Cas Nickase组件进行多用作用于同时多发性基础编辑和靶向的转基因敲入。编码由大鼠APOBEC1和SPCAS9 NICKASE组成的PIN点基本编辑器的mRNA瞬时传递与合成适性剂编码的GRNA结合使用,可实现耐用的靶蛋白敲除,并显着提高了细胞生存能力,编辑效率,以及与CRISPR-CasS9相比,基因组的编辑效率和基因组完整性均与CRISPR-CasS9相比。为了演示同种异体PSC工程的PIN点平台的实用性,我们使用自动化的克隆跟踪和拾取工作流进行了一系列基因型,生成了一组克隆性低下IPSC线。通过多重碱基编辑和同时进行靶向转基因整合的碱基编辑生成的低免疫原性IPSC系列保留了多能性,并在区别为治疗细胞产物时表现出预期的人白细胞抗原(HLA)表型。因此,PIN点平台代表了一种安全有效的解决方案,可以通过与下游自动化兼容的新型单步过程同时执行多个基因组工程操作,从而提供了极大地简化同种异体IPSC衍生细胞疗法的开发的机会。
各种方案已被证明可有效地将小鼠和人多能干细胞分化为骨骼肌,并用于研究肌发生。当前的2D肌源分化方案可以模仿肌肉发育及其在诸如肌肉营养不良等病理状况下的改变。3D骨骼肌分化方法还可以模拟发育中的器官中各种细胞类型之间的相互作用。我们的协议确保通过具有近似性中胚层和神经抑制剂的近端和神经抑制剂的身份和神经板板板和外瘤的有组织结构进一步产生的细胞,通过细胞通过细胞通过细胞通过细胞将人类胚胎/诱导的多能干细胞(HESC/HIPSC)分化为骨骼肌器官(SMO)。连续培养忽略了神经谱系分化并促进胎儿肌发生,包括纤维化孕育祖细胞和PAX7阳性肌源祖细胞的成熟。PAX7祖细胞类似于人类发育的晚期阶段,并且基于单细胞的转录组分析,聚集在接近原代肌肉的成年卫星细胞附近。为了克服疾病进展过程中肌肉营养不良患者的肌肉活检的有限可用性,我们建议使用SMO系统,SMO系统提供了从患者特异性IPSC中提供稳定的骨骼肌祖细胞,以研究健康和患病状况中人类肌肉的研究。
摘要 源自人类多能干细胞的脑类器官这一新兴技术为研究人脑发育及相关疾病提供了前所未有的机会。人们已开发出各种脑类器官方案,这些方案可以重现发育中人脑的细胞类型多样性、细胞结构组织、发育过程、功能和病理的一些关键特征。在这篇综述中,我们重点介绍人类干细胞衍生的脑类器官的模式化。我们首先概述了生成脑类器官的一般程序。然后,我们重点介绍了一些最近开发的脑类器官方案和化学线索,这些方案和线索涉及模拟特定人脑区域、亚区域和多个区域共同发育。我们还讨论了人脑类器官技术的局限性和未来潜在的改进。